Suppr超能文献

从FAIR到CURE:生物系统计算模型指南。

From FAIR to CURE: Guidelines for Computational Models of Biological Systems.

作者信息

Sauro Herbert M, Agmon Eran, Blinov Michael L, Gennari John H, Hellerstein Joe, Heydarabadipour Adel, Hunter Peter, Jardine Bartholomew E, May Elebeoba, Nickerson David P, Smith Lucian P, Bader Gary D, Bergmann Frank, Boyle Patrick M, Dräger Andreas, Faeder James R, Feng Song, Freire Juliana, Fröhlich Fabian, Glazier James A, Gorochowski Thomas E, Helikar Tomas, Hoops Stefan, Imoukhuede Princess, Keating Sarah M, Konig Matthias, Laubenbacher Reinhard, Loew Leslie M, Lopez Carlos F, Lytton William W, McCulloch Andrew, Mendes Pedro, Myers Chris J, Myers Jerry G, Mulugeta Lealem, Niarakis Anna, van Niekerk David D, Olivier Brett G, Patrie Alexander A, Quardokus Ellen M, Radde Nicole, Rohwer Johann M, Sahle Sven, Schaff James C, Sego T J, Shin Janis, Snoep Jacky L, Vadigepalli Rajanikanth, Wiley H Steve, Waltemath Dagmar, Moraru Ion

机构信息

Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA.

eScience Institute, University of Washington, Seattle, 98195-5061, WA, USA.

出版信息

ArXiv. 2025 Feb 21:arXiv:2502.15597v1.

Abstract

Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and are key to progress. For this reason, and recognizing that such models are a very special type of "data", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.

摘要

科学数据管理指南已依据FAIR原则制定,该原则要求数据具备可查找、可访问、可互操作和可重用性。在许多科学学科中,尤其是计算生物学领域,数据和模型都是取得进展的关键。出于这个原因,并认识到此类模型是一种非常特殊类型的“数据”,我们认为计算模型,特别是医学、生理学和系统生物学中普遍存在的机制模型,应该有一套补充指南。我们提出了CURE原则,强调模型应具备可信、可理解、可重现和可扩展的特性。我们深入探讨每个原则,讨论模型可信度的验证、确认和不确定性量化;模型描述和注释的清晰度以确保可理解性;遵循标准和开放科学实践以实现可重现性;以及使用开放标准和模块化代码以实现可扩展性和可重用性。我们概述了CURE各方面的推荐要求和基线要求,旨在提高计算模型的影响力和可信度,特别是在生物医学应用中,可信度至关重要。我们的观点强调了采用更严谨的建模方法的必要性,这与数字孪生等新兴趋势相一致,并强调了数据和建模标准对于互操作性和可重用性的重要性。最后,我们强调,鉴于实施这些指南需要付出巨大努力,社区应尽可能多地实现指南的自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/273f/11875277/df85f1a13c0d/nihpp-2502.15597v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验