Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140523. doi: 10.1016/j.bbapap.2020.140523. Epub 2020 Aug 25.
Here, we characterize the role of a π-helix in the molecular mechanisms underlying thermoadaptation in the glycoside hydrolase family 4 (GH4). The interspersed π-helix present in a subgroup is evolutionarily related to a conserved α-helix in other orthologs by a single residue insertion/deletion event. The insertional residue, Phe407, in a hyperthermophilic α-glucuronidase, makes specific interactions across the inter-subunit interface. In order to establish the sequence-structure-stability implications of the π-helix, the wild-type and the deletion variant (Δ407) were characterized. The variant showed a significant lowering of melting temperature and optimum temperature for the highest activity. Crystal structures of the proteins show a transformation of the π-helix to a continuous α-helix in the variant, identical to that in orthologs lacking this insertion. Thermodynamic parameters were determined from stability curves representing the temperature dependence of unfolding free energy. Though the proteins display maximum stabilities at similar temperatures, a higher melting temperature in the wild-type is achieved by a combination of higher enthalpy and lower heat capacity of unfolding. Comparisons of the structural changes, and the activity and thermodynamic profiles allow us to infer that specific non-covalent interactions, and the existence of residual structure in the unfolded state, are crucial determinants of its thermostability. These features permit the enzyme to balance the preservation of structure at a higher temperature with the thermodynamic stability required for optimum catalysis.
在这里,我们描述了糖苷水解酶家族 4(GH4)中热适应分子机制中π-螺旋的作用。在一个亚组中存在的插在的π-螺旋通过单个残基插入/缺失事件与其他同源物中的保守α-螺旋进化相关。在一个嗜热α-葡萄糖醛酸酶中,插入残基 Phe407 在亚基间界面上进行特异性相互作用。为了确定π-螺旋的序列-结构-稳定性的影响,对野生型和缺失变体(Δ407)进行了表征。该变体的熔点和最高活性的最适温度明显降低。蛋白质的晶体结构显示变体中的π-螺旋转变为连续的α-螺旋,与缺失该插入的同源物相同。通过代表解折叠自由能与温度关系的稳定性曲线确定热力学参数。尽管这些蛋白质在相似的温度下显示出最大的稳定性,但野生型的熔点更高是由于解折叠焓更高和热容更低的组合。结构变化、活性和热力学特征的比较使我们能够推断出特定的非共价相互作用和未折叠状态下的残留结构是其热稳定性的关键决定因素。这些特征使酶能够在更高温度下保持结构的保存,同时满足最佳催化所需的热力学稳定性。