Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany.
Fachgruppe Strukturgeologie, GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany.
Micron. 2020 Nov;138:102924. doi: 10.1016/j.micron.2020.102924. Epub 2020 Aug 16.
Scanning electron microscope (SEM) imaging of fossils allows unlocking ultrastructural information about their skeletal tissues, but sample preparation of biominerals forming their skeletons requires time, patience, and knowledge. SEM and associated analytical methods allow the observation of internal microstructure, shedding light on function, growth and chemistry. Sample preparation is the process by which material is fixed within a medium (e.g. epoxy resin), a transect created and surface defects removed. This step is arguably the most important in any SEM-based analysis, allowing for the acquisition of reliable, high quality data sets. When conducting any SEM-based technique, the presence of a flat surface is needed to collect consistent and reliable data. Surfaces with topography will both induce charging effects but will also compromise the reliability of data acquired. Techniques from material science are continuously adapted to palaeontological applications, in particular with respect to calcareous microfossils. However, similar studies have not been extensively conducted on bioapatite, owing in part to the difficulties faced in sample preparation alongside its susceptibility to electron beam damage. This case study focuses on conodonts, a marine vertebrate group ranging from the late Cambrian to the Late Triassic. They have been chosen as a model due to the abundance of material, complexity of internal tissues and previous work focused on histological features. With these phosphatic microfossils, we attempt to outline the process of sample preparation and provide information on how to avoid and overcome common pitfalls.
扫描电子显微镜(SEM)成像技术可以揭示化石骨骼组织的超微结构信息,但要对形成骨骼的生物矿化物质进行样本制备,需要时间、耐心和专业知识。SEM 及相关分析方法可以观察内部微观结构,揭示功能、生长和化学过程。样本制备是将材料固定在介质(如环氧树脂)中的过程,同时制作横切面并去除表面缺陷。这一步可以说是任何基于 SEM 的分析中最重要的一步,因为它可以获取可靠、高质量的数据。当进行任何基于 SEM 的技术时,都需要一个平整的表面来收集一致和可靠的数据。具有形貌的表面不仅会引起电荷效应,还会影响所获取数据的可靠性。材料科学的技术不断被应用于古生物学领域,特别是针对钙质微化石。然而,由于生物磷灰石样本制备方面的困难以及其对电子束损伤的敏感性,类似的研究尚未广泛开展。本案例研究以牙形石为重点,这是一种从晚寒武纪到晚三叠纪的海洋脊椎动物群。之所以选择它们作为模型,是因为其材料丰富、内部组织复杂,并且已经有研究集中在组织学特征上。对于这些磷酸盐微化石,我们试图概述样本制备过程,并提供有关如何避免和克服常见问题的信息。