Roskamp Institute, Sarasota, Florida, 34243, USA.
The Open University, Milton Keynes, UK.
BMC Neurol. 2020 Aug 27;20(1):317. doi: 10.1186/s12883-020-01849-3.
The ventricular system plays a vital role in blood-cerebrospinal fluid (CSF) exchange and interstitial fluid-CSF drainage pathways. CSF is formed in the specialized secretory tissue called the choroid plexus, which consists of epithelial cells, fenestrated capillaries and the highly vascularized stroma. Very little is currently known about the role played by the ventricles and the choroid plexus tissue in aging and Alzheimer's disease (AD).
In this study, we used our state-of-the-art proteomic platform, a liquid chromatography/mass spectrometry (LC-MS/MS) approach coupled with Tandem Mass Tag isobaric labeling to conduct a detailed unbiased proteomic analyses of autopsied tissue isolated from the walls of the inferior horn of the lateral ventricles in AD (77.2 ± 0.6 yrs), age-matched controls (77.0 ± 0.5 yrs), and nonagenarian cases (93.2 ± 1.1 yrs).
Ingenuity pathway analyses identified phagosome maturation, impaired tight-junction signaling, and glucose/mannose metabolism as top significantly regulated pathways in controls vs nonagenarians. In matched-control vs AD cases we identified alterations in mitochondrial bioenergetics, oxidative stress, remodeling of epithelia adherens junction, macrophage recruitment and phagocytosis, and cytoskeletal dynamics. Nonagenarian vs AD cases demonstrated augmentation of oxidative stress, changes in gluconeogenesis-glycolysis pathways, and cellular effects of choroidal smooth muscle cell vasodilation. Amyloid plaque score uniquely correlated with remodeling of epithelial adherens junctions, Fc γ-receptor mediated phagocytosis, and alterations in RhoA signaling. Braak staging was uniquely correlated with altered iron homeostasis, superoxide radical degradation and phagosome maturation.
These changes provide novel insights to explain the compromise to the physiological properties and function of the ventricles/choroid plexus system in nonagenarian aging and AD pathogenesis. The pathways identified could provide new targets for therapeutic strategies to mitigate the divergent path towards AD.
脑室系统在血液-脑脊髓液(CSF)交换和间质液-CSF 引流途径中起着至关重要的作用。CSF 是由称为脉络丛的特殊分泌组织形成的,它由上皮细胞、有孔毛细血管和高度血管化的基质组成。目前,对于脑室和脉络丛组织在衰老和阿尔茨海默病(AD)中的作用知之甚少。
在这项研究中,我们使用了最先进的蛋白质组学平台,即液相色谱/质谱(LC-MS/MS)方法与串联质量标签等离 子体共振标记相结合,对 AD(77.2 ± 0.6 岁)、年龄匹配对照(77.0 ± 0.5 岁)和 90 岁以上病例(93.2 ± 1.1 岁)的侧脑室下角壁尸检组织进行了详细的无偏蛋白质组学分析。
相互作用途径分析确定了吞噬体成熟、紧密连接信号受损以及葡萄糖/甘露糖代谢作为对照与 90 岁以上人群中调节最显著的途径。在匹配对照与 AD 病例中,我们发现了线粒体生物能学、氧化应激、上皮细胞黏附连接重塑、巨噬细胞募集和吞噬作用以及细胞骨架动力学的改变。与 AD 病例相比,90 岁以上病例显示氧化应激增强,糖异生-糖酵解途径改变,脉络丛平滑肌细胞血管舒张的细胞效应。淀粉样斑块评分与上皮细胞黏附连接重塑、Fcγ-受体介导的吞噬作用以及 RhoA 信号转导的改变具有独特的相关性。Braak 分期与铁稳态、超氧化物自由基降解和吞噬体成熟的改变具有独特的相关性。
这些变化为解释 90 岁以上衰老和 AD 发病机制中脑室/脉络丛系统的生理特性和功能受损提供了新的见解。所确定的途径可以为治疗策略提供新的靶点,以减轻向 AD 发展的不同途径。