BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States.
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
Int Rev Neurobiol. 2020;155:113-140. doi: 10.1016/bs.irn.2020.03.018. Epub 2020 Aug 11.
With the lack of success and increasing urgency for therapies capable of impacting Alzheimer's disease (AD) and its progression, there are increasing efforts to expand testing of new mechanistic hypotheses to attack the disease from different angles. Three such hypotheses are the "Mitochondrial Cascade (MC)" hypothesis, the "Endo-Lysosomal Dysfunction (ELD)" hypothesis and the "Type 3 Diabetes (T3D)" hypothesis. These hypotheses provide a rationale for new pharmacological approaches to address the mitochondrial, endo-lysosomal and metabolic dysfunction associated with AD. It is increasingly evident that there is critical interplay between the metabolic dysfunction associated with obesity/metabolic syndrome/type 2 diabetes mellitus (T2DM) and patient susceptibility to AD development. A candidate for a common mechanism linking these metabolically-driven disease states is chronically-activated mechanistic target of rapamycin (mTOR) signaling. Unrestrained chronic mTOR activation may be responsible for sustaining metabolic, lysosomal and mitochondrial dysfunction in AD, driving both the breakdown of the blood-brain barrier via endothelial cell dysfunction and hyperphosphorylation of tau and formation of amyloid plaques in the brain. It is hypothesized that sodium glucose cotransporter 2 (SGLT2) inhibition, mediated by sustained glucose loss, restores mTOR cycling through nutrient-driven, nightly periods of transient mTOR inhibition (and restoration of catabolic cellular housekeeping processes) interspersed by daily periods of transient mTOR activation (and anabolism) accompanying eating. In this way, a flexible mTOR dynamic is restored, thereby preventing or even reducing the progress of AD pathology. The first study to investigate the effect of SGLT2 inhibition in patients with AD is ongoing and focuses on the impact on energy metabolism in the brain following treatment with the SGLT2 inhibitor dapagliflozin.
由于缺乏能够有效治疗阿尔茨海默病(AD)及其进展的疗法,目前越来越多的研究人员致力于拓展新的机制假说,从不同角度来攻克这种疾病。其中三个假说分别是“线粒体级联(MC)”假说、“内溶酶体功能障碍(ELD)”假说和“3 型糖尿病(T3D)”假说。这些假说为针对 AD 相关的线粒体、内溶酶体和代谢功能障碍的新药物治疗方法提供了理论依据。越来越明显的是,肥胖/代谢综合征/2 型糖尿病(T2DM)患者的代谢功能障碍与 AD 的易感性之间存在着关键的相互作用。将这些由代谢驱动的疾病状态联系在一起的一个候选共同机制是慢性激活的雷帕霉素靶蛋白(mTOR)信号。不受限制的慢性 mTOR 激活可能是导致 AD 中代谢、溶酶体和线粒体功能障碍持续存在的原因,它不仅会导致血脑屏障的破坏,还会导致内皮细胞功能障碍、tau 过度磷酸化以及大脑中淀粉样斑块的形成。目前的假设是,通过持续的葡萄糖丢失介导的钠-葡萄糖协同转运蛋白 2(SGLT2)抑制作用,恢复 mTOR 循环,通过营养驱动、夜间短暂的 mTOR 抑制(并恢复分解代谢的细胞管家过程),以及每天短暂的 mTOR 激活(和合成代谢)来恢复葡萄糖的摄取。通过这种方式,可以恢复灵活的 mTOR 动态,从而预防甚至减少 AD 病理的进展。目前正在进行一项研究,旨在探讨 SGLT2 抑制对 AD 患者的影响,重点关注 SGLT2 抑制剂达格列净治疗后大脑能量代谢的变化。