Suppr超能文献

二元IRT模型。

A Dyadic IRT Model.

作者信息

Gin Brian, Sim Nicholas, Skrondal Anders, Rabe-Hesketh Sophia

机构信息

University of California, San Francisco, San Francisco, USA.

University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA, 94720, USA.

出版信息

Psychometrika. 2020 Sep;85(3):815-836. doi: 10.1007/s11336-020-09718-1. Epub 2020 Aug 27.

Abstract

We propose a dyadic Item Response Theory (dIRT) model for measuring interactions of pairs of individuals when the responses to items represent the actions (or behaviors, perceptions, etc.) of each individual (actor) made within the context of a dyad formed with another individual (partner). Examples of its use include the assessment of collaborative problem solving or the evaluation of intra-team dynamics. The dIRT model generalizes both Item Response Theory models for measurement and the Social Relations Model for dyadic data. The responses of an actor when paired with a partner are modeled as a function of not only the actor's inclination to act and the partner's tendency to elicit that action, but also the unique relationship of the pair, represented by two directional, possibly correlated, interaction latent variables. Generalizations are discussed, such as accommodating triads or larger groups. Estimation is performed using Markov-chain Monte Carlo implemented in Stan, making it straightforward to extend the dIRT model in various ways. Specifically, we show how the basic dIRT model can be extended to accommodate latent regressions, multilevel settings with cluster-level random effects, as well as joint modeling of dyadic data and a distal outcome. A simulation study demonstrates that estimation performs well. We apply our proposed approach to speed-dating data and find new evidence of pairwise interactions between participants, describing a mutual attraction that is inadequately characterized by individual properties alone.

摘要

我们提出了一种二元项目反应理论(dIRT)模型,用于测量个体对之间的互动,其中项目反应代表每个个体(行动者)在与另一个个体(伙伴)形成的二元组背景下所采取的行动(或行为、感知等)。其应用示例包括协作问题解决的评估或团队内部动态的评价。dIRT模型既推广了用于测量的项目反应理论模型,也推广了用于二元数据的社会关系模型。当行动者与伙伴配对时,行动者的反应不仅被建模为行动者行动倾向和伙伴引发该行动倾向的函数,还被建模为该对独特关系的函数,这种独特关系由两个方向可能相关的互动潜在变量表示。文中讨论了该模型的推广,例如如何适用于三元组或更大的群体。估计是使用在Stan中实现的马尔可夫链蒙特卡罗方法进行的,这使得以各种方式扩展dIRT模型变得很直接。具体来说,我们展示了基本的dIRT模型如何扩展以适应潜在回归、具有聚类水平随机效应的多层次设置,以及二元数据和远端结果的联合建模。一项模拟研究表明估计效果良好。我们将提出的方法应用于速配数据,并发现了参与者之间成对互动的新证据,描述了一种仅由个体特征无法充分表征的相互吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验