Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA.
Graduate School of Education and Information Studies, University of California, Los Angeles, Los Angeles, CA, USA.
Psychometrika. 2019 Mar;84(1):236-260. doi: 10.1007/s11336-018-9630-0. Epub 2018 Jul 9.
Item response theory (IRT) is one of the most widely utilized tools for item response analysis; however, local item and person independence, which is a critical assumption for IRT, is often violated in real testing situations. In this article, we propose a new type of analytical approach for item response data that does not require standard local independence assumptions. By adapting a latent space joint modeling approach, our proposed model can estimate pairwise distances to represent the item and person dependence structures, from which item and person clusters in latent spaces can be identified. We provide an empirical data analysis to illustrate an application of the proposed method. A simulation study is provided to evaluate the performance of the proposed method in comparison with existing methods.
项目反应理论(IRT)是项目反应分析中应用最广泛的工具之一;然而,IRT 的一个关键假设——局部项目和个体独立性,在实际测试情况下经常被违反。在本文中,我们提出了一种新的项目反应数据分析方法,该方法不需要标准的局部独立性假设。通过采用潜在空间联合建模方法,我们提出的模型可以估计成对距离来表示项目和个体的依赖结构,从中可以识别潜在空间中的项目和个体聚类。我们提供了一个实证数据分析来说明该方法的应用。还进行了一项模拟研究,以评估与现有方法相比,该方法的性能。