RD2/Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, D-24148 Kiel, Germany.
ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey 08801, United States.
Environ Sci Technol. 2020 Oct 6;54(19):11865-11875. doi: 10.1021/acs.est.9b06242. Epub 2020 Sep 15.
Explaining the dynamics of gas-saturated live petroleum in deep water remains a challenge. Recently, Pesch et al. [ 2018, 35 (4), 289-299] reported laboratory experiments on methane-saturated oil droplets under emulated deep-water conditions, providing an opportunity to elucidate the underlying dynamical processes. We explain these observations with the Texas A&M Oil spill/Outfall Calculator (TAMOC), which models the pressure-, temperature-, and composition-dependent interactions between oil-gas phase transfer; aqueous dissolution; and densities and volumes of liquid oil droplets, gas bubbles, and two-phase droplet-bubble pairs. TAMOC reveals that aqueous dissolution removed >95% of the methane from ∼3.5 mm live oil droplets within 14.5 min, prior to gas bubble formation, during the experiments of Pesch et al. Additional simulations indicate that aqueous dissolution, fluid density changes, and gas-oil phase transitions (ebullition, condensation) may all contribute to the fates of live oil and gas in deep water, depending on the release conditions. Illustrative model scenarios suggest that 5 mm diameter gas bubbles released at a <470 m water depth can transport methane, ethane, and propane to the water surface. Ethane and propane can reach the water surface from much deeper releases of 5 mm diameter live oil droplets, during which ebullition occurs at water depths of <70 m.
解释饱和天然气在深水环境中的动态变化仍然是一个挑战。最近,Pesch 等人[2018,35(4),289-299]报道了在模拟深水条件下甲烷饱和油滴的实验室实验,为阐明潜在的动力学过程提供了机会。我们使用德克萨斯 A&M 溢油/排放计算器(TAMOC)来解释这些观察结果,该计算器模型化了油-气相间转移、水相溶解以及液态油滴、气泡和两相滴-泡对的密度和体积之间的压力、温度和组成依赖性相互作用。TAMOC 表明,在 Pesch 等人的实验中,在气泡形成之前,在 14.5 分钟内,水相溶解从约 3.5 毫米的活油滴中去除了超过 95%的甲烷。额外的模拟表明,水相溶解、流体密度变化和油-气相间转变(沸腾、冷凝)都可能影响深水条件下的活油和天然气的命运,具体取决于释放条件。说明性模型情景表明,在水深<470 米处释放的直径<5 毫米的气泡可以将甲烷、乙烷和丙烷输送到水面。在水深<70 米处发生沸腾的情况下,直径为 5 毫米的活油滴从更深的释放中可以将乙烷和丙烷输送到水面。