Suppr超能文献

铂纳米颗粒修饰的垂直排列石墨烯丝网印刷电极:电化学表征及析氢反应探索

Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction.

作者信息

Scremin Jessica, Joviano Dos Santos Isabella V, Hughes Jack P, García-Miranda Ferrari Alejandro, Valderrama Enrique, Zheng Wei, Zhong Xizhou, Zhao Xin, Sartori Elen J R, Crapnell Robert D, Rowley-Neale Samuel J, Banks Craig E

机构信息

Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.

出版信息

Nanoscale. 2020 Sep 21;12(35):18214-18224. doi: 10.1039/d0nr04336b. Epub 2020 Aug 28.

Abstract

We present the fabrication of platinum (Pt) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M HSO). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at -10 mA cm) and Tafel value of 47 mV (vs. RHE) and 27 mV dec. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec). The uniform coverage of Pt nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt nanoparticles (ca. 4 μg cm), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.

摘要

我们展示了铂(Pt)纳米颗粒(平均直径约3 nm)修饰的垂直排列石墨烯(VG)丝网印刷电极(Pt/VG-SPE)的制备,并探索了它们在酸性介质(0.5 M HSO)中对析氢反应(HER)的物理化学特性和电催化活性。Pt/VG-SPE表现出显著的HER活性,过电位(在-10 mA cm处记录)为47 mV(相对于可逆氢电极,RHE),塔菲尔值为27 mV dec。这些值表明Pt/VG-SPE的电催化性能明显优于裸/未修饰的VG-SPE(789 mV(相对于RHE)和97 mV dec)。Pt纳米颗粒(约3 nm)在VG-SPE载体上的均匀覆盖导致Pt纳米颗粒的负载量较低(约4 μg cm),但产生了与文献中报道的最佳Pt基催化剂相当的HER活性,具有相对便宜、高度可重复和可定制的HER催化平台的优点。为了测试Pt是否会从Pt/VG-SPE表面潜在溶解,这是任何HER催化剂的关键考虑因素,我们通过增材制造(AM)定制了一个电化学流通池,该流通池允许定期收集电解质并通过电感耦合等离子体发射光谱(ICP-OES)进行分析。AM电化学池可以快速定制成多种几何形状,使其与任何尺寸/形状的电化学平台兼容。这项工作提出了一个新颖且极具竞争力的HER平台以及一种用于探索电极表面Pt纳米颗粒溶解程度的新型AM技术,使其成为那些寻求测试其给定电化学平台稳定性/催化剂放电情况的研究的重要内容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验