Suppr超能文献

基于迭代数据驱动建模的迭代学习模型预测控制

Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling.

作者信息

Ma Lele, Liu Xiangjie, Kong Xiaobing, Lee Kwang Y

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3377-3390. doi: 10.1109/TNNLS.2020.3016295. Epub 2021 Aug 3.

Abstract

Iterative learning model predictive control (ILMPC) has been recognized as an effective approach to realize high-precision tracking for batch processes with repetitive nature because of its excellent learning ability and closed-loop stability property. However, as a model-based strategy, ILMPC suffers from the unavailability of accurate first principal model in many complex nonlinear batch systems. On account of the abundant process data, nonlinear dynamics of batch systems can be identified precisely along the trials by neural network (NN), making it enforceable to design a data-driven ILMPC. In this article, by using a control-affine feedforward neural network (CAFNN), the features in the process data of the former batch are extracted to form a nonlinear affine model for the controller design in the current batch. Based on the CAFNN model, the ILMPC is formulated in a tube framework to attenuate the influence of modeling errors and track the reference trajectory with sustained accuracy. Due to the control-affine structure, the gradients of the objective function can be analytically computed offline, so as to improve the online computational efficiency and optimization feasibility of the tube ILMPC. The robust stability and the convergence of the data-driven ILMPC system are analyzed theoretically. The simulation on a typical batch reactor verifies the effectiveness of the proposed control method.

摘要

迭代学习模型预测控制(ILMPC)因其出色的学习能力和闭环稳定性,已被公认为是一种实现具有重复特性的间歇过程高精度跟踪的有效方法。然而,作为一种基于模型的策略,ILMPC在许多复杂的非线性间歇系统中面临着精确的第一原理模型不可用的问题。鉴于丰富的过程数据,神经网络(NN)可以沿着试验精确识别间歇系统的非线性动力学,从而使得设计数据驱动的ILMPC成为可能。在本文中,通过使用控制仿射前馈神经网络(CAFNN),提取前一批次过程数据中的特征,以形成用于当前批次控制器设计的非线性仿射模型。基于CAFNN模型,ILMPC在管框架中进行公式化,以减弱建模误差的影响并持续精确地跟踪参考轨迹。由于控制仿射结构,目标函数的梯度可以离线解析计算,从而提高管ILMPC的在线计算效率和优化可行性。从理论上分析了数据驱动的ILMPC系统的鲁棒稳定性和收敛性。在典型间歇反应器上的仿真验证了所提出控制方法的有效性。

相似文献

1
Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling.基于迭代数据驱动建模的迭代学习模型预测控制
IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3377-3390. doi: 10.1109/TNNLS.2020.3016295. Epub 2021 Aug 3.
2
An Efficient Iterative Learning Predictive Functional Control for Nonlinear Batch Processes.
IEEE Trans Cybern. 2022 Jun;52(6):4147-4160. doi: 10.1109/TCYB.2020.3021978. Epub 2022 Jun 16.
4
Data-Driven Iterative Learning Model Predictive Control With Self-Modified Prior Knowledge.
IEEE Trans Neural Netw Learn Syst. 2025 Aug;36(8):13769-13781. doi: 10.1109/TNNLS.2024.3453380.
5
Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths.
IEEE Trans Cybern. 2023 Dec;53(12):7881-7894. doi: 10.1109/TCYB.2023.3234630. Epub 2023 Nov 29.
7
8
Dynamic Neural Network Predictive Compensation-Based Point-to-Point Iterative Learning Control With Nonuniform Batch Length.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):13005-13016. doi: 10.1109/TNNLS.2023.3265930. Epub 2024 Sep 3.
9
Design of robust fuzzy iterative learning control for nonlinear batch processes.
Math Biosci Eng. 2023 Nov 7;20(11):20274-20294. doi: 10.3934/mbe.2023897.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验