Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.
PLoS One. 2020 Aug 28;15(8):e0237474. doi: 10.1371/journal.pone.0237474. eCollection 2020.
The effective treatment of carbapenemase-producing Klebsiella pneumoniae infection has been limited and required novel potential agents. Due to the novel drug development crisis, using old antimicrobial agents and combination therapy have been highlighted. This study focused on fosfomycin which inhibits cell wall synthesis and has potential activity on Enterobacteriaceae. We evaluated fosfomycin activity against carbapenemase-producing K. pneumoniae and characterized fosfomycin resistance mechanisms. Fosfomycin revealed effective activity against only 31.8% of carbapenemase-producing K. pneumoniae isolates. The major resistance mechanism was FosA3 production. The co-occurrence of FosA3 overexpression with the mutation of glpT (or loss of glpT) and/or uhpT was mediated high-level resistance (MIC>256 mg/L) to fosfomycin. Moreover, fosA3 silenced in sixteen fosfomycin-susceptible isolates and the plasmid carrying fosA3 of these isolates increased 32- to 64-fold of fosfomycin MICs in Escherichia coli DH5α transformants. The in vitro activity of fosfomycin combination with amikacin by checkerboard assay showed synergism and no interaction in six (16.2%) and sixteen isolates (43.3%), respectively. No antagonism of fosfomycin and amikacin was observed. Notably, the silence of aac (6)'-Ib and aphA6 was observed in amikacin-susceptible isolates. Our study suggests that the combination of fosfomycin and amikacin may be insufficient for the treatment of carbapenemase-producing K. pneumoniae isolates.
碳青霉烯酶产生的肺炎克雷伯菌感染的有效治疗受到限制,需要新的潜在药物。由于新药开发危机,旧的抗菌药物和联合治疗已成为重点。本研究集中于抑制细胞壁合成并对肠杆菌科具有潜在活性的磷霉素。我们评估了磷霉素对产碳青霉烯酶的肺炎克雷伯菌的活性,并对磷霉素耐药机制进行了特征描述。磷霉素仅对 31.8%的产碳青霉烯酶的肺炎克雷伯菌分离株表现出有效活性。主要耐药机制是产生 FosA3。FosA3 过表达与 glpT 突变(或 glpT 缺失)和/或 uhpT 共发生介导了对磷霉素的高水平耐药(MIC>256mg/L)。此外,在 16 株对磷霉素敏感的分离株中沉默 fosA3,并在这些分离株携带 fosA3 的质粒中,使大肠杆菌 DH5α 转化子中磷霉素 MIC 增加 32-64 倍。通过棋盘试验测定磷霉素与阿米卡星的体外活性显示协同作用,在 6 株(16.2%)和 16 株分离株(43.3%)中无相互作用。未观察到磷霉素和阿米卡星之间的拮抗作用。值得注意的是,在阿米卡星敏感的分离株中观察到 aac(6)'-Ib 和 aphA6 的沉默。我们的研究表明,磷霉素和阿米卡星的联合治疗可能不足以治疗产碳青霉烯酶的肺炎克雷伯菌分离株。