Institute for Advanced Study, 30 Vasilaki Papadopulu Str., Varna 9010, Bulgaria.
Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784, Bulgaria.
Brain Res. 2020 Dec 1;1748:147069. doi: 10.1016/j.brainres.2020.147069. Epub 2020 Aug 25.
The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorpho.Org database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of the mouse, rat or human cerebral cortex. Physical estimates of the total number and type of ions involved in neuronal electric spiking based on the obtained morphometric data, combined with energetics of neurotransmitter release and signaling fueled by glucose consumed by the active brain, support highly efficient cerebral computation performed at the thermodynamically allowed Landauer limit for implementation of irreversible logical operations. Individual proton tunneling events in voltage-sensing S4 protein α-helices of Na, K or Ca ion channels are ideally suited to serve as single Landauer elementary logical operations that are then amplified by selective ionic currents traversing the open channel pores. This miniaturization of computational gating allows the execution of over 1.2 zetta logical operations per second in the human cerebral cortex without combusting the brain by the released heat.
皮质锥体神经元的电活动由结构稳定、形态复杂的轴突-树突树支持。轴突和树突在长度或口径上的解剖差异反映了它们在输入或输出神经信息方面的潜在功能特化。为了对锥体神经元的计算能力进行适当评估,我们分析了来自 NeuroMorpho.Org 数据库的大量三维数字重建数据集,并在小鼠、大鼠或人类大脑皮层的不同区域和层中量化了基本的树突或轴突形态计量测量。基于获得的形态计量数据,对涉及神经元电爆发的离子总数和类型进行物理估计,结合由活跃大脑消耗的葡萄糖驱动的神经递质释放和信号的能量学,支持在热力学允许的 Landauer 极限下执行高度有效的大脑计算,实现不可逆的逻辑操作。Na、K 或 Ca 离子通道电压感应 S4 蛋白α-螺旋中的单个质子隧穿事件非常适合作为单个 Landauer 基本逻辑操作,然后通过穿过开放通道孔的选择性离子电流进行放大。这种计算门控的小型化允许在人类大脑皮层中每秒执行超过 1.2 泽塔逻辑操作,而不会因释放的热量而燃烧大脑。