Suppr超能文献

FWAVina:一种基于烟花算法的新型蛋白质-配体对接优化算法。

FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm.

机构信息

Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, China; College of Computer and Information Science, Southwest University, Chongqing 400715, China.

Luzhou High School, Luzhou 646000, China.

出版信息

Comput Biol Chem. 2020 Oct;88:107363. doi: 10.1016/j.compbiolchem.2020.107363. Epub 2020 Aug 20.

Abstract

Protein-ligand docking is an essential process that has accelerated drug discovery. How to accurately and effectively optimize the predominant position and orientation of ligands in the binding pocket of a target protein is a major challenge. This paper proposed a novel ligand binding pose search method called FWAVina based on the fireworks algorithm, which combined the fireworks algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon local search method adopted in AutoDock Vina to address the pose search problem in docking. The FWA was used as a global optimizer to rapidly search promising poses, and the Broyden-Fletcher-Goldfarb-Shannon method was incorporated into FWAVina to perform an exact local search. FWAVina was developed and tested on the PDBbind and DUD-E datasets. The docking performance of FWAVina was compared with the original Vina program. The results showed that FWAVina achieves a remarkable execution time reduction of more than 50 % than Vina without compromising the prediction accuracies in the docking and virtual screening experiments. In addition, the increase in the number of ligand rotatable bonds has almost no effect on the efficiency of FWAVina. The higher accuracy, faster convergence and improved stability make the FWAVina method a better choice of docking tool for computer-aided drug design. The source code is available at https://github.com/eddyblue/FWAVina/.

摘要

蛋白-配体对接是加速药物发现的重要过程。如何准确有效地优化配体在靶蛋白结合口袋中的主要位置和取向是一个主要挑战。本文提出了一种新的基于烟花算法的配体结合构象搜索方法 FWAVina,该方法将烟花算法与 AutoDock Vina 中采用的高效 Broyden-Fletcher-Goldfarb-Shannon 局部搜索方法相结合,解决了对接中的构象搜索问题。FWA 被用作全局优化器,快速搜索有前途的构象,而 Broyden-Fletcher-Goldfarb-Shannon 方法被纳入 FWAVina 中以进行精确的局部搜索。FWAVina 在 PDBbind 和 DUD-E 数据集上进行了开发和测试。将 FWAVina 的对接性能与原始 Vina 程序进行了比较。结果表明,FWAVina 在不影响对接和虚拟筛选实验预测准确性的情况下,将执行时间减少了 50%以上。此外,配体可旋转键数量的增加对 FWAVina 的效率几乎没有影响。更高的准确性、更快的收敛速度和改进的稳定性使 FWAVina 方法成为计算机辅助药物设计中更好的对接工具选择。源代码可在 https://github.com/eddyblue/FWAVina/ 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验