Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Taipa, Macau, China.
Chem Biol Drug Des. 2021 Jan;97(1):97-110. doi: 10.1111/cbdd.13764. Epub 2020 Aug 10.
Protein-ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein. In this paper, we introduce an efficient flexible docking method, GWOVina, which is a variant of the Vina implementation using the grey wolf optimizer (GWO) and random walk for the global search, and the Dunbrack rotamer library for side-chain sampling. The new method was validated for rigid and flexible-receptor docking using four independent datasets. In rigid docking, GWOVina showed comparable docking performance to Vina in terms of ligand pose RMSD, success rate, and affinity prediction. In flexible-receptor docking, GWOVina has improved success rate compared to Vina and AutoDockFR. It ran 2 to 7 times faster than Vina and 40 to 100 times faster than AutoDockFR. Therefore, GWOVina can play a role in solving the complex flexible-receptor docking cases and is suitable for virtual screening of compound libraries. GWOVina is freely available at https://cbbio.cis.um.edu.mo/software/gwovina for testing.
蛋白配体对接程序是预测配体与受体蛋白结合构象的不可或缺的工具。在本文中,我们介绍了一种高效的柔性对接方法 GWOVina,它是使用灰狼优化器 (GWO) 和随机游走进行全局搜索的 Vina 实现的变体,以及 Dunbrack 构象库进行侧链采样。该新方法使用四个独立的数据集对刚性和柔性受体对接进行了验证。在刚性对接中,GWOVina 在配体构象 RMSD、成功率和亲和力预测方面与 Vina 具有可比的对接性能。在柔性受体对接中,GWOVina 与 Vina 相比提高了成功率,与 AutoDockFR 相比则提高了 2 到 7 倍的速度。因此,GWOVina 可以在解决复杂的柔性受体对接案例中发挥作用,并且适合化合物库的虚拟筛选。GWOVina 可在 https://cbbio.cis.um.edu.mo/software/gwovina 上免费获取,以进行测试。