Suppr超能文献

哺乳动物细胞中小分子诱导的转录控制。

Small-molecule inducible transcriptional control in mammalian cells.

机构信息

Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.

Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.

出版信息

Crit Rev Biotechnol. 2020 Dec;40(8):1131-1150. doi: 10.1080/07388551.2020.1808583. Epub 2020 Aug 30.

Abstract

Tools for tuning transcription in mammalian cells have broad applications, from basic biological discovery to human gene therapy. While precise control over target gene transcription dosing with small molecules (drugs) is highly sought, the design of such inducible systems that meets required performance metrics poses a great challenge in mammalian cell synthetic biology. Important characteristics include tight and tunable gene expression with a low background, minimal drug toxicity, and orthogonality. Here, we review small-molecule-inducible transcriptional control devices that have demonstrated success in mammalian cells and mouse models. Most of these systems employ natural or designed ligand-binding protein domains to directly or indirectly communicate with transcription machinery at a target sequence, carefully constructed fusions. Example fusions include those to transcription activator-like effectors (TALEs), DNA-targeting proteins (e.g. dCas systems) fused to transactivating domains, and recombinases. Similar to the architecture of Type I nuclear receptors, many of the systems are designed such that the transcriptional controller is excluded from the nucleus in the absence of an inducer. Techniques that use ligand-induced proteolysis and antibody-based chemically induced dimerizers are also described. Collectively, these transcriptional control devices take advantage of a variety of recently developed molecular biology tools and cell biology insights and represent both proof of concept (e.g. targeting reporter gene expression) and disease-targeting studies.

摘要

在哺乳动物细胞中,用于调节转录的工具具有广泛的应用,从基础生物学发现到人类基因治疗。虽然人们高度追求通过小分子(药物)对靶基因转录进行精确控制,但设计满足所需性能指标的这种诱导系统在哺乳动物细胞合成生物学中是一个巨大的挑战。重要的特征包括具有低背景的紧密和可调的基因表达、最小的药物毒性和正交性。在这里,我们回顾了在哺乳动物细胞和小鼠模型中已经证明成功的小分子诱导转录控制装置。这些系统中的大多数都使用天然或设计的配体结合蛋白结构域,通过精心构建的融合,直接或间接地与转录机器在靶序列上进行通讯。例如融合包括转录激活因子样效应物(TALEs)、与转录激活结构域融合的 DNA 靶向蛋白(如 dCas 系统)以及重组酶。与 I 型核受体的结构类似,许多系统的设计使得转录控制器在没有诱导剂的情况下被排除在核外。还描述了使用配体诱导蛋白水解和基于抗体的化学诱导二聚体的技术。这些转录控制装置共同利用了各种最近开发的分子生物学工具和细胞生物学见解,代表了概念验证(例如靶向报告基因表达)和疾病靶向研究。

相似文献

1
Small-molecule inducible transcriptional control in mammalian cells.
Crit Rev Biotechnol. 2020 Dec;40(8):1131-1150. doi: 10.1080/07388551.2020.1808583. Epub 2020 Aug 30.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles.
Curr Opin Biotechnol. 2022 Dec;78:102823. doi: 10.1016/j.copbio.2022.102823. Epub 2022 Oct 27.
5
Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.
ACS Synth Biol. 2014 Oct 17;3(10):723-30. doi: 10.1021/sb400114p. Epub 2013 Nov 22.
6
Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities.
Nucleic Acids Res. 2015 Feb 18;43(3):1955-64. doi: 10.1093/nar/gku1388.
7
Multiple Chemical Inducible Tal Effectors for Genome Editing and Transcription Activation.
ACS Chem Biol. 2018 Mar 16;13(3):609-617. doi: 10.1021/acschembio.7b00606. Epub 2018 Jan 8.
8
Synthetic mammalian trigger-controlled bipartite transcription factors.
Nucleic Acids Res. 2013 Jul;41(13):e134. doi: 10.1093/nar/gkt405. Epub 2013 May 17.
9
Modes of TAL effector-mediated repression.
Nucleic Acids Res. 2014 Dec 1;42(21):13061-73. doi: 10.1093/nar/gku1124. Epub 2014 Nov 11.
10
Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
Methods Mol Biol. 2018;1772:191-203. doi: 10.1007/978-1-4939-7795-6_10.

引用本文的文献

1
A mediator-free sonogenetic switch for therapeutic protein expression in mammalian cells.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf191.
3
Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems.
Nat Commun. 2024 Apr 17;15(1):3311. doi: 10.1038/s41467-024-47592-y.
4
All-in-one IQ toggle switches with high versatilities for fine-tuning of transgene expression in mammalian cells and tissues.
Mol Ther Methods Clin Dev. 2024 Feb 2;32(1):101202. doi: 10.1016/j.omtm.2024.101202. eCollection 2024 Mar 14.
5
Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies.
GEN Biotechnol. 2023 Apr 1;2(2):106-119. doi: 10.1089/genbio.2023.0008. Epub 2023 Apr 18.
6
Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles.
Curr Opin Biotechnol. 2022 Dec;78:102823. doi: 10.1016/j.copbio.2022.102823. Epub 2022 Oct 27.
7
Engineering autonomous closed-loop designer cells for disease therapy.
iScience. 2022 Jan 29;25(3):103834. doi: 10.1016/j.isci.2022.103834. eCollection 2022 Mar 18.
8
Design and characterization of a salicylic acid-inducible gene expression system for Jurkat cells.
J Biotechnol. 2022 Feb 20;346:11-14. doi: 10.1016/j.jbiotec.2022.01.003. Epub 2022 Jan 18.
9
IQ-Switch is a QF-based innocuous, silencing-free, and inducible gene switch system in zebrafish.
Commun Biol. 2021 Dec 16;4(1):1405. doi: 10.1038/s42003-021-02923-3.
10
Caged Cumate Enables Proximity-Dependent Control Over Gene Expression.
Chembiochem. 2021 Jul 15;22(14):2440-2448. doi: 10.1002/cbic.202100158. Epub 2021 Jun 8.

本文引用的文献

1
Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme.
ACS Synth Biol. 2020 Jan 17;9(1):19-25. doi: 10.1021/acssynbio.9b00371. Epub 2019 Dec 16.
2
A green tea-triggered genetic control system for treating diabetes in mice and monkeys.
Sci Transl Med. 2019 Oct 23;11(515). doi: 10.1126/scitranslmed.aav8826.
3
Clinical lessons learned from the first leg of the CAR T cell journey.
Nat Med. 2019 Sep;25(9):1341-1355. doi: 10.1038/s41591-019-0564-6. Epub 2019 Sep 9.
4
Multi-input chemical control of protein dimerization for programming graded cellular responses.
Nat Biotechnol. 2019 Oct;37(10):1209-1216. doi: 10.1038/s41587-019-0242-8. Epub 2019 Sep 9.
5
Adoptive cell therapy using engineered natural killer cells.
Bone Marrow Transplant. 2019 Aug;54(Suppl 2):785-788. doi: 10.1038/s41409-019-0601-6.
6
Inducible Gene Switches with Memory in Human T Cells for Cellular Immunotherapy.
ACS Synth Biol. 2019 Aug 16;8(8):1744-1754. doi: 10.1021/acssynbio.8b00512. Epub 2019 Jul 16.
7
Aptamer-based and aptazyme-based riboswitches in mammalian cells.
Curr Opin Chem Biol. 2019 Oct;52:72-78. doi: 10.1016/j.cbpa.2019.05.018. Epub 2019 Jun 22.
9
Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics.
ACS Cent Sci. 2019 Apr 24;5(4):651-662. doi: 10.1021/acscentsci.9b00020. Epub 2019 Mar 7.
10
Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
BMC Genomics. 2019 Mar 19;20(1):225. doi: 10.1186/s12864-019-5601-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验