AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
AbbVie Cambridge Research Center, 200 Sydney St, Cambridge, MA, 02139, USA.
BMC Genomics. 2019 Mar 19;20(1):225. doi: 10.1186/s12864-019-5601-9.
Large-scale genetic screening using CRISPR-Cas9 technology has emerged as a powerful approach to uncover and validate gene functions. The ability to control the timing of genetic perturbation during CRISPR screens will facilitate precise dissection of dynamic and complex biological processes. Here, we report the optimization of a drug-inducible CRISPR-Cas9 system that allows high-throughput gene interrogation with a temporal control.
We designed multiple drug-inducible sgRNA expression vectors and measured their activities using an EGFP gene disruption assay in 11 human and mouse cell lines. The optimal design allows for a tight and inducible control of gene knockout in vitro, and in vivo during a seven-week-long experiment following hematopoietic reconstitution in mice. We next performed parallel genome-wide loss-of-function screens using the inducible and constitutive CRISPR-Cas9 systems. In proliferation-based dropout screens, these two approaches have similar performance in discriminating essential and nonessential genes. In a more challenging phenotypic assay that requires cytokine stimulation and cell staining, we observed similar sensitivity of the constitutive and drug-induced screening approaches in detecting known hits. Importantly, we demonstrate minimal leakiness of our inducible CRISPR screening platforms in the absence of chemical inducers in large-scale settings.
In this study, we have developed a drug-inducible CRISPR-Cas9 system that shows high cleavage efficiency upon induction but low background activity. Using this system, we have achieved inducible gene disruption in a wide range of cell types both in vitro and in vivo. For the first time, we present a systematic side-by-side comparison of constitutive and drug-inducible CRISPR-Cas9 platforms in large-scale functional screens. We demonstrate the tightness and efficiency of our drug-inducible CRISPR-Cas9 system in genome-wide pooled screening. Our design increases the versatility of CRISPR-based genetic screening and represents a significant upgrade on existing functional genomics toolbox.
使用 CRISPR-Cas9 技术进行大规模基因筛选已成为揭示和验证基因功能的强大方法。在 CRISPR 筛选过程中控制遗传扰动时间的能力将有助于精确剖析动态和复杂的生物学过程。在这里,我们报告了一种药物诱导型 CRISPR-Cas9 系统的优化,该系统允许进行具有时间控制的高通量基因询问。
我们设计了多个药物诱导 sgRNA 表达载体,并使用 EGFP 基因破坏测定法在 11 个人类和小鼠细胞系中测量了它们的活性。最佳设计允许在体外和体内进行紧密且可诱导的基因敲除控制,在经过造血重建的七周实验后在小鼠体内进行。接下来,我们使用诱导型和组成型 CRISPR-Cas9 系统进行平行的全基因组功能丧失筛选。在基于增殖的缺失筛选中,这两种方法在区分必需基因和非必需基因方面表现出相似的性能。在更具挑战性的表型测定中,需要细胞因子刺激和细胞染色,我们观察到在检测已知命中时,组成型和药物诱导筛选方法具有相似的敏感性。重要的是,我们证明在没有化学诱导剂的情况下,我们的诱导型 CRISPR 筛选平台在大规模设置中的泄漏性最小。
在这项研究中,我们开发了一种药物诱导型 CRISPR-Cas9 系统,该系统在诱导时显示出高切割效率,但背景活性低。使用该系统,我们在体外和体内实现了广泛细胞类型的可诱导基因缺失。这是首次在大规模功能筛选中对组成型和药物诱导型 CRISPR-Cas9 平台进行系统的并排比较。我们证明了我们的药物诱导型 CRISPR-Cas9 系统在全基因组池筛选中的紧密性和效率。我们的设计增加了基于 CRISPR 的遗传筛选的多功能性,并代表了现有功能基因组学工具包的重大升级。