Suppr超能文献

一种用于轴承故障提取的快速迭代滤波分解与对称差分解析能量算子

A fast iterative filtering decomposition and symmetric difference analytic energy operator for bearing fault extraction.

作者信息

Xu Yuanbo, Fan Fan, Jiang Xiangkui

机构信息

School of Automation, Xi'an university of posts and telecommunications, Xi'an, Shaanxi Province 710121, China.

School of Automation, Xi'an university of posts and telecommunications, Xi'an, Shaanxi Province 710121, China.

出版信息

ISA Trans. 2021 Feb;108:317-332. doi: 10.1016/j.isatra.2020.08.015. Epub 2020 Aug 17.

Abstract

The fault vibration signals extracted from defective bearings are generally non-stationary and non-linear. Besides, such signals are extremely weak and easily buried by inevitable background noise and vibration interferences. Thus, the development of methods capable of detecting their hidden information in a fast and reliable way is of high interest in bearing fault detection. An alternative bearing fault extraction method based on fast iterative filtering decomposition (FIFD) and symmetric difference analytic energy operator (SD-AEO) is proposed in this work. The FIFD method performs excellently in suppressing mode mixing and produce a meaningful decomposition for a higher level of noise. More importantly, unlike other mode decomposition techniques, the FIFD has high computational efficiency, so we can speed up the calculations significantly. After decomposing the signal into a group of intrinsic mode functions (IMFs), a criterion based on the product of kurtosis and permutation entropy (PeEn) is proposed to choose the IMFs embedding richer bearing fault impulses. Subsequently, an enhanced demodulation technique, SD-AEO, is employed to detect the bearing fault signatures from the selected IMF. The simulated and real signals verify the efficiency of the proposed method.

摘要

从有缺陷的轴承中提取的故障振动信号通常是非平稳和非线性的。此外,此类信号极其微弱,很容易被不可避免的背景噪声和振动干扰所掩盖。因此,开发能够快速可靠地检测其隐藏信息的方法在轴承故障检测中具有很高的研究价值。本文提出了一种基于快速迭代滤波分解(FIFD)和对称差分解析能量算子(SD-AEO)的轴承故障提取方法。FIFD方法在抑制模态混叠方面表现出色,并且对于较高水平的噪声能产生有意义的分解。更重要的是,与其他模态分解技术不同,FIFD具有很高的计算效率,因此我们可以显著加快计算速度。将信号分解为一组固有模态函数(IMF)后,提出了一种基于峭度和排列熵(PeEn)乘积的准则来选择嵌入更丰富轴承故障脉冲的IMF。随后,采用一种增强型解调技术SD-AEO从所选的IMF中检测轴承故障特征。仿真和实际信号验证了所提方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验