Suppr超能文献

熵指标:一种低速轴承诊断方法。

Entropy Indicators: An Approach for Low-Speed Bearing Diagnosis.

机构信息

Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Pº. J. Mª. Arizmendiarrieta, 2, 20500 Arrasate-Mondragón, Spain.

Control, Modeling, Identification, and Applications (CoDAlab), Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany, 16, 08019 Barcelona, Spain.

出版信息

Sensors (Basel). 2021 Jan 27;21(3):849. doi: 10.3390/s21030849.

Abstract

To increase the competitiveness of wind energy, the maintenance costs of offshore floating and fixed wind turbines need to be reduced. One strategy is the enhancement of the condition monitoring techniques for pitch bearings, because their low operational speed and the high loads applied to them make their monitoring challenging. Vibration analysis has been widely used for monitoring the bearing condition with good results obtained for regular bearings, but with difficulties when the operational speed decreases. Therefore, new techniques are required to enhance the capabilities of vibration analysis for bearings under such operational conditions. This study proposes the use of indicators based on entropy for monitoring a low-speed bearing condition. The indicators used are approximate, dispersion, singular value decomposition, and spectral entropy of the permutation entropy. This approach has been tested with vibration signals acquired in a test rig with bearings under different health conditions. The results show that entropy indicators (EIs) can discriminate with higher-accuracy damaged bearings for low-speed bearings compared with the regular indicators. Furthermore, it is shown that the combination of regular and entropy-based indicators can also contribute to a more reliable diagnosis.

摘要

为了提高风能的竞争力,需要降低海上漂浮式和固定式风力涡轮机的维护成本。一种策略是增强变桨轴承的状态监测技术,因为它们的低运行速度和施加在它们上面的高负载使得监测具有挑战性。振动分析已广泛用于监测轴承状况,对于常规轴承取得了良好的效果,但在运行速度降低时会遇到困难。因此,需要新的技术来增强在这种运行条件下振动分析对轴承的监测能力。本研究提出了使用基于熵的指标来监测低速轴承状况。使用的指标是近似指标、分散指标、奇异值分解指标和排列熵的谱熵指标。该方法已经在具有不同健康状况的轴承的试验台上采集的振动信号中进行了测试。结果表明,与常规指标相比,熵指标 (EIs) 可以更准确地识别低速轴承的损坏轴承。此外,还表明常规和基于熵的指标的组合也有助于更可靠的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ee/7865646/257ca87589b1/sensors-21-00849-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验