Suppr超能文献

基于稀疏主成分的高维中介分析

Sparse Principal Component based High-Dimensional Mediation Analysis.

作者信息

Zhao Yi, Lindquist Martin A, Caffo Brian S

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

出版信息

Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.

Abstract

Causal mediation analysis aims to quantify the intermediate effect of a mediator on the causal pathway from treatment to outcome. When dealing with multiple mediators, which are potentially causally dependent, the possible decomposition of pathway effects grows exponentially with the number of mediators. An existing approach incorporated the principal component analysis (PCA) to address this challenge based on the fact that the transformed mediators are conditionally independent given the orthogonality of the principal components (PCs). However, the transformed mediator PCs, which are linear combinations of original mediators, can be difficult to interpret. A sparse high-dimensional mediation analysis approach is proposed which adopts the sparse PCA method to the mediation setting. The proposed approach is applied to a task-based functional magnetic resonance imaging study, illustrating its ability to detect biologically meaningful results related to an identified mediator.

摘要

因果中介分析旨在量化中介变量在从治疗到结果的因果路径上的中间效应。当处理多个可能存在因果依赖关系的中介变量时,路径效应的可能分解会随着中介变量的数量呈指数增长。一种现有的方法引入了主成分分析(PCA)来应对这一挑战,其依据是在主成分(PC)正交的情况下,变换后的中介变量是条件独立的。然而,变换后的中介变量主成分是原始中介变量的线性组合,可能难以解释。本文提出了一种稀疏高维中介分析方法,该方法将稀疏主成分分析方法应用于中介分析设置中。所提出的方法应用于一项基于任务的功能磁共振成像研究,展示了其检测与已识别中介变量相关的具有生物学意义结果的能力。

相似文献

1
Sparse Principal Component based High-Dimensional Mediation Analysis.
Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.
2
Bayesian Causal Mediation Analysis with Multiple Ordered Mediators.
Stat Modelling. 2019 Dec 1;19(6):634-652. doi: 10.1177/1471082x18798067. Epub 2018 Oct 21.
3
Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.
Biometrics. 2016 Jun;72(2):402-13. doi: 10.1111/biom.12421. Epub 2015 Sep 28.
4
Causal mediation analysis with multiple causally non-ordered mediators.
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
5
Sparse Principal Component Analysis With Preserved Sparsity Pattern.
IEEE Trans Image Process. 2019 Jul;28(7):3274-3285. doi: 10.1109/TIP.2019.2895464. Epub 2019 Jan 25.
7
Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies.
Biometrics. 2020 Sep;76(3):700-710. doi: 10.1111/biom.13189. Epub 2019 Dec 19.
8
Stochastic convex sparse principal component analysis.
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.
9
Pathway Lasso: Pathway Estimation and Selection with High-Dimensional Mediators.
Stat Interface. 2022;15(1):39-50. doi: 10.4310/21-sii673. Epub 2021 Aug 11.

引用本文的文献

2
Causal mediation analysis: selection with asymptotically valid inference.
J R Stat Soc Series B Stat Methodol. 2024 Nov 28;87(3):678-700. doi: 10.1093/jrsssb/qkae109. eCollection 2025 Jul.
3
IT Capability, Organisational Learning and Innovation Performance of Firms in Kenya.
J Knowl Econ. 2022 Feb 24:1-29. doi: 10.1007/s13132-021-00886-8.
4
Mediation analysis with graph mediator.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf004.
6
Mediation analysis in longitudinal study with high-dimensional methylation mediators.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae496.
7
Mediation Analysis with Multiple Exposures and Multiple Mediators.
Stat Med. 2024 Nov 10;43(25):4887-4898. doi: 10.1002/sim.10215. Epub 2024 Sep 9.
8
Model Selection for Exposure-Mediator Interaction.
Data Sci Sci. 2024;3(1). doi: 10.1080/26941899.2024.2360892. Epub 2024 Jun 16.
9
A new framework for exploratory network mediator analysis in omics data.
Genome Res. 2024 May 15;34(4):642-654. doi: 10.1101/gr.278684.123.
10
Methods for mediation analysis with high-dimensional DNA methylation data: Possible choices and comparisons.
PLoS Genet. 2023 Nov 7;19(11):e1011022. doi: 10.1371/journal.pgen.1011022. eCollection 2023 Nov.

本文引用的文献

1
Multiple Brain Networks Mediating Stimulus-Pain Relationships in Humans.
Cereb Cortex. 2020 Jun 1;30(7):4204-4219. doi: 10.1093/cercor/bhaa048.
2
SMAC: Spatial multi-category angle-based classifier for high-dimensional neuroimaging data.
Neuroimage. 2018 Jul 15;175:230-245. doi: 10.1016/j.neuroimage.2018.03.040. Epub 2018 Mar 27.
3
Causal mediation analysis with multiple mediators in the presence of treatment noncompliance.
Stat Med. 2018 May 20;37(11):1810-1829. doi: 10.1002/sim.7632. Epub 2018 Mar 15.
4
High-dimensional multivariate mediation with application to neuroimaging data.
Biostatistics. 2018 Apr 1;19(2):121-136. doi: 10.1093/biostatistics/kxx027.
5
Interventional Effects for Mediation Analysis with Multiple Mediators.
Epidemiology. 2017 Mar;28(2):258-265. doi: 10.1097/EDE.0000000000000596.
6
Estimating and testing high-dimensional mediation effects in epigenetic studies.
Bioinformatics. 2016 Oct 15;32(20):3150-3154. doi: 10.1093/bioinformatics/btw351. Epub 2016 Jun 29.
8
Causal mediation analysis with multiple causally non-ordered mediators.
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
9
Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.
Biometrics. 2016 Jun;72(2):402-13. doi: 10.1111/biom.12421. Epub 2015 Sep 28.
10
Mediation Analysis with Multiple Mediators.
Epidemiol Methods. 2014 Jan;2(1):95-115. doi: 10.1515/em-2012-0010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验