Suppr超能文献

基于稀疏主成分的高维中介分析

Sparse Principal Component based High-Dimensional Mediation Analysis.

作者信息

Zhao Yi, Lindquist Martin A, Caffo Brian S

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

出版信息

Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.

Abstract

Causal mediation analysis aims to quantify the intermediate effect of a mediator on the causal pathway from treatment to outcome. When dealing with multiple mediators, which are potentially causally dependent, the possible decomposition of pathway effects grows exponentially with the number of mediators. An existing approach incorporated the principal component analysis (PCA) to address this challenge based on the fact that the transformed mediators are conditionally independent given the orthogonality of the principal components (PCs). However, the transformed mediator PCs, which are linear combinations of original mediators, can be difficult to interpret. A sparse high-dimensional mediation analysis approach is proposed which adopts the sparse PCA method to the mediation setting. The proposed approach is applied to a task-based functional magnetic resonance imaging study, illustrating its ability to detect biologically meaningful results related to an identified mediator.

摘要

因果中介分析旨在量化中介变量在从治疗到结果的因果路径上的中间效应。当处理多个可能存在因果依赖关系的中介变量时,路径效应的可能分解会随着中介变量的数量呈指数增长。一种现有的方法引入了主成分分析(PCA)来应对这一挑战,其依据是在主成分(PC)正交的情况下,变换后的中介变量是条件独立的。然而,变换后的中介变量主成分是原始中介变量的线性组合,可能难以解释。本文提出了一种稀疏高维中介分析方法,该方法将稀疏主成分分析方法应用于中介分析设置中。所提出的方法应用于一项基于任务的功能磁共振成像研究,展示了其检测与已识别中介变量相关的具有生物学意义结果的能力。

相似文献

1
Sparse Principal Component based High-Dimensional Mediation Analysis.基于稀疏主成分的高维中介分析
Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.
2
Bayesian Causal Mediation Analysis with Multiple Ordered Mediators.具有多个有序中介变量的贝叶斯因果中介分析
Stat Modelling. 2019 Dec 1;19(6):634-652. doi: 10.1177/1471082x18798067. Epub 2018 Oct 21.
4
Causal mediation analysis with multiple causally non-ordered mediators.具有多个因果无序中介变量的因果中介分析。
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
5
Sparse Principal Component Analysis With Preserved Sparsity Pattern.具有保留稀疏模式的稀疏主成分分析
IEEE Trans Image Process. 2019 Jul;28(7):3274-3285. doi: 10.1109/TIP.2019.2895464. Epub 2019 Jan 25.
8
Stochastic convex sparse principal component analysis.随机凸稀疏主成分分析
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.

引用本文的文献

2
Causal mediation analysis: selection with asymptotically valid inference.因果中介分析:具有渐近有效推断的选择。
J R Stat Soc Series B Stat Methodol. 2024 Nov 28;87(3):678-700. doi: 10.1093/jrsssb/qkae109. eCollection 2025 Jul.
4
Mediation analysis with graph mediator.使用图形中介变量的中介分析。
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf004.
7
Mediation Analysis with Multiple Exposures and Multiple Mediators.多暴露和多中介的中介分析。
Stat Med. 2024 Nov 10;43(25):4887-4898. doi: 10.1002/sim.10215. Epub 2024 Sep 9.
8
Model Selection for Exposure-Mediator Interaction.暴露-中介变量交互作用的模型选择
Data Sci Sci. 2024;3(1). doi: 10.1080/26941899.2024.2360892. Epub 2024 Jun 16.

本文引用的文献

6
Estimating and testing high-dimensional mediation effects in epigenetic studies.表观遗传学研究中高维中介效应的估计与检验
Bioinformatics. 2016 Oct 15;32(20):3150-3154. doi: 10.1093/bioinformatics/btw351. Epub 2016 Jun 29.
8
Causal mediation analysis with multiple causally non-ordered mediators.具有多个因果无序中介变量的因果中介分析。
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.
10
Mediation Analysis with Multiple Mediators.具有多个中介变量的中介效应分析
Epidemiol Methods. 2014 Jan;2(1):95-115. doi: 10.1515/em-2012-0010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验