Suppr超能文献

暴露-中介变量交互作用的模型选择

Model Selection for Exposure-Mediator Interaction.

作者信息

Li Ruiyang, Zhu Xi, Lee Seonjoo

机构信息

Department of Biostatistics, Columbia University, New York, USA.

Department of Psychiatry, Columbia University, New York, USA.

出版信息

Data Sci Sci. 2024;3(1). doi: 10.1080/26941899.2024.2360892. Epub 2024 Jun 16.

Abstract

In mediation analysis, the exposure often influences the mediating effect, i.e., there is an interaction between exposure and mediator on the dependent variable. When the mediator is high-dimensional, it is necessary to identify non-zero mediators and exposure-by-mediator ( -by- ) interactions. Although several high-dimensional mediation methods can naturally handle -by- interactions, research is scarce in preserving the underlying hierarchical structure between the main effects and the interactions. To fill the knowledge gap, we develop the XMInt procedure to select and -by- interactions in the high-dimensional mediators setting while preserving the hierarchical structure. Our proposed method employs a sequential regularization-based forward-selection approach to identify the mediators and their hierarchically preserved interaction with exposure. Our numerical experiments showed promising selection results. Further, we applied our method to ADNI morphological data and examined the role of cortical thickness and subcortical volumes on the effect of amyloid-beta accumulation on cognitive performance, which could be helpful in understanding the brain compensation mechanism.

摘要

在中介分析中,暴露因素通常会影响中介效应,即暴露因素与中介变量在因变量上存在交互作用。当中介变量是高维时,有必要识别非零中介变量以及暴露因素与中介变量(E-by-M)的交互作用。尽管有几种高维中介方法能够自然地处理E-by-M交互作用,但在保留主效应和交互作用之间潜在层次结构方面的研究却很少。为了填补这一知识空白,我们开发了XMInt程序,用于在高维中介变量设置中选择M和E-by-M交互作用,同时保留层次结构。我们提出的方法采用基于顺序正则化的前向选择方法来识别中介变量及其与暴露因素的层次保留交互作用。我们的数值实验显示了有前景的选择结果。此外,我们将我们的方法应用于ADNI形态学数据,并研究了皮质厚度和皮质下体积在淀粉样蛋白β积累对认知表现的影响中的作用,这可能有助于理解大脑补偿机制。

相似文献

1
Model Selection for Exposure-Mediator Interaction.
Data Sci Sci. 2024;3(1). doi: 10.1080/26941899.2024.2360892. Epub 2024 Jun 16.
2
Bayesian hierarchical models for high-dimensional mediation analysis with coordinated selection of correlated mediators.
Stat Med. 2021 Nov 30;40(27):6038-6056. doi: 10.1002/sim.9168. Epub 2021 Aug 17.
3
A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data.
J Appl Stat. 2024 Jun 16;52(2):287-305. doi: 10.1080/02664763.2024.2367148. eCollection 2025.
4
Decomposition of the total effect for two mediators: A natural mediated interaction effect framework.
J Causal Inference. 2022 Jan;10(1):18-44. doi: 10.1515/jci-2020-0017. Epub 2022 Mar 19.
6
High-dimensional mediation analysis for longitudinal mediators and survival outcomes.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf206.
7
A machine learning based approach towards high-dimensional mediation analysis.
Neuroimage. 2023 Mar;268:119843. doi: 10.1016/j.neuroimage.2022.119843. Epub 2022 Dec 28.
8
High-Dimensional Mediation Analysis With Confounders in Survival Models.
Front Genet. 2021 Jun 28;12:688871. doi: 10.3389/fgene.2021.688871. eCollection 2021.
9
High-Dimensional Mediation Analysis Based on Additive Hazards Model for Survival Data.
Front Genet. 2021 Dec 23;12:771932. doi: 10.3389/fgene.2021.771932. eCollection 2021.

本文引用的文献

1
Mediation analysis for survival data with high-dimensional mediators.
Bioinformatics. 2021 Nov 5;37(21):3815-3821. doi: 10.1093/bioinformatics/btab564.
2
CMAverse: A Suite of Functions for Reproducible Causal Mediation Analyses.
Epidemiology. 2021 Sep 1;32(5):e20-e22. doi: 10.1097/EDE.0000000000001378.
3
Sparse Principal Component based High-Dimensional Mediation Analysis.
Comput Stat Data Anal. 2020 Feb;142. doi: 10.1016/j.csda.2019.106835. Epub 2019 Sep 3.
4
Penalized models for analysis of multiple mediators.
Genet Epidemiol. 2020 Jul;44(5):408-424. doi: 10.1002/gepi.22296. Epub 2020 Apr 27.
5
High-dimensional mediation analysis in survival models.
PLoS Comput Biol. 2020 Apr 17;16(4):e1007768. doi: 10.1371/journal.pcbi.1007768. eCollection 2020 Apr.
6
BIC and Alternative Bayesian Information Criteria in the Selection of Structural Equation Models.
Struct Equ Modeling. 2014;21(1):1-19. doi: 10.1080/10705511.2014.856691. Epub 2014 Jan 31.
7
Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data.
Bioinformatics. 2020 Jan 15;36(2):347-355. doi: 10.1093/bioinformatics/btz565.
9
Exploratory Mediation Analysis via Regularization.
Struct Equ Modeling. 2017;24(5):733-744. doi: 10.1080/10705511.2017.1311775. Epub 2017 Apr 25.
10
Decomposition of the Total Effect in the Presence of Multiple Mediators and Interactions.
Am J Epidemiol. 2018 Jun 1;187(6):1311-1318. doi: 10.1093/aje/kwx355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验