Suppr超能文献

SMAC:基于空间多类别角度的高维神经影像数据分类器。

SMAC: Spatial multi-category angle-based classifier for high-dimensional neuroimaging data.

机构信息

Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center (LCCC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Neuroimage. 2018 Jul 15;175:230-245. doi: 10.1016/j.neuroimage.2018.03.040. Epub 2018 Mar 27.

Abstract

With the development of advanced imaging techniques, scientists are interested in identifying imaging biomarkers that are related to different subtypes or transitional stages of various cancers, neuropsychiatric diseases, and neurodegenerative diseases, among many others. In this paper, we propose a novel spatial multi-category angle-based classifier (SMAC) for the efficient identification of such imaging biomarkers. The proposed SMAC not only utilizes the spatial structure of high-dimensional imaging data but also handles both binary and multi-category classification problems. We introduce an efficient algorithm based on an alternative direction method of multipliers to solve the large-scale optimization problem for SMAC. Both our simulation and real data experiments demonstrate the usefulness of SMAC.

摘要

随着先进成像技术的发展,科学家们对鉴定与各种癌症、神经精神疾病和神经退行性疾病等不同亚型或过渡阶段相关的成像生物标志物很感兴趣。在本文中,我们提出了一种新颖的基于空间多类别角度的分类器(SMAC),用于高效识别这种成像生物标志物。所提出的 SMAC 不仅利用了高维成像数据的空间结构,而且还处理了二进制和多类别分类问题。我们引入了一种基于增广拉格朗日乘子法的有效算法来解决 SMAC 的大规模优化问题。我们的模拟和真实数据实验都证明了 SMAC 的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ce/6317520/e583f39eca46/nihms-983661-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

1
Reinforced Angle-based Multicategory Support Vector Machines.基于增强角度的多类别支持向量机
J Comput Graph Stat. 2016;25(3):806-825. doi: 10.1080/10618600.2015.1043010. Epub 2016 Aug 5.
2
Multicategory angle-based large-margin classification.基于多类别角度的大间隔分类。
Biometrika. 2014 Sep;101(3):625-640. doi: 10.1093/biomet/asu017. Epub 2014 Jul 23.
7
Interpretable whole-brain prediction analysis with GraphNet.基于 GraphNet 的可解释全脑预测分析。
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.
8
Ensemble sparse classification of Alzheimer's disease.阿尔茨海默病的集成稀疏分类。
Neuroimage. 2012 Apr 2;60(2):1106-16. doi: 10.1016/j.neuroimage.2012.01.055. Epub 2012 Jan 14.
9
Hard or Soft Classification? Large-margin Unified Machines.硬分类还是软分类?大间隔统一机器。
J Am Stat Assoc. 2011 Mar 1;106(493):166-177. doi: 10.1198/jasa.2011.tm10319.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验