Xue Wei, Moore Lee R, Nakano Naruhiko, Chalmers Jeffrey J, Zborowski Maciej
Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, OH 44195, United States.
The William G. Lowrie Department of Chemical and Biomolecular Engineering, the Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210.
J Magn Magn Mater. 2019 Mar 15;474:152-160. doi: 10.1016/j.jmmm.2018.10.108. Epub 2018 Oct 28.
Paramagnetic constituents of a cell have strong effect on cell's volume magnetic susceptibility even at low volume fraction because of their high susceptibility relative to that of the diamagnetic cell constituents. The effect can be measured at a single cell level by measuring cell terminal velocity in viscous media using a microscope equipped with a well-defined field and gradient magnet configuration (referred to as magnetophoretic analysis by cell tracking velocimetry, CTV). The sensitivity of such a microscopic-scale magnetometry was compared to that of a reference method of superconducting quantum interference-magnetic properties measurement system (SQUID-MPMS) using a red blood cell (RBC) suspension model. The RBC hemoglobin oxygen saturation determines the hemoglobin molecular magnetic susceptibility (diamagnetic when fully oxygenated, paramagnetic when fully deoxygenated or converted to methemoglobin). The SQUID-MPMS measurements were performed on an average of 5,000 RBCs in 20 μL physiological phosphate buffer at room temperature, those by CTV on a single cell track in a mean magnetic field of 1.6 T and mean gradient of 240 T/m, repeated for an average of 1,000 tracks per sample. This suggests 5,000× higher sensitivity of cell susceptometry by magnetophoretic analysis than by SQUID-MPMS. The magnetophoretic mean RBC magnetic susceptibilities were in the range determined by SQUID-MPMS (lower limit) and theory (upper limit). The ability of magnetophoretic analysis to resolve susceptibility peaks in a mixed cell populations was confirmed for an oxy RBC and met RBC mixture. Magnetophoretic analysis by CTV provides new tool for studies of emergence of paramagnetic reaction products in the cell.
细胞中的顺磁性成分即使在低体积分数下也会对细胞的体积磁化率产生强烈影响,这是因为它们相对于抗磁性细胞成分具有较高的磁化率。通过使用配备有明确磁场和梯度磁体配置的显微镜测量粘性介质中的细胞终端速度,可以在单个细胞水平上测量这种影响(通过细胞跟踪测速磁泳分析,简称CTV)。使用红细胞(RBC)悬浮模型,将这种微观尺度磁测量法的灵敏度与超导量子干涉磁性能测量系统(SQUID-MPMS)的参考方法进行了比较。红细胞血红蛋白氧饱和度决定了血红蛋白分子的磁化率(完全氧合时为抗磁性,完全脱氧或转化为高铁血红蛋白时为顺磁性)。SQUID-MPMS测量是在室温下对20μL生理磷酸盐缓冲液中平均5000个红细胞进行的,CTV测量是在平均磁场为1.6 T、平均梯度为240 T/m的单个细胞轨迹上进行的,每个样品平均重复1000条轨迹。这表明通过磁泳分析进行细胞磁化率测量的灵敏度比通过SQUID-MPMS高5000倍。磁泳法测得的红细胞平均磁化率在SQUID-MPMS测定的范围(下限)和理论范围(上限)内。对于氧合红细胞和高铁红细胞混合物,证实了磁泳分析分辨混合细胞群体中磁化率峰值的能力。通过CTV进行的磁泳分析为研究细胞中顺磁性反应产物的出现提供了新工具。