Suppr超能文献

通过多光谱成像分析对六种豆科植物中的单个硬实种子进行无损鉴定。

Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species.

作者信息

Hu Xiaowen, Yang Lingjie, Zhang Zuxin

机构信息

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 China.

出版信息

Plant Methods. 2020 Aug 26;16:116. doi: 10.1186/s13007-020-00659-5. eCollection 2020.

Abstract

BACKGROUND

Physical dormancy (hard seed) occurs in most species of Leguminosae family and has great consequences not only for ecological adaptation but also for agricultural practice of these species. A rapid, nondestructive and on-site screening method to detect hard seed within species is fundamental important for maintaining seed vigor and germplasm storage as well as understanding seed adaptation to various environment. In this study, the potential of multispectral imaging with object-wise multivariate image analysis was evaluated as a way to identify hard and soft seeds in , , , , , and . Principal component analysis (PCA), linear discrimination analysis (LDA), and support vector machines (SVM) methods were applied to classify hard and soft seeds according to their morphological features and spectral traits.

RESULTS

The performance of discrimination model via multispectral imaging analysis was varied with species. For , , and , an excellent classification could be achieved in an independent validation data set. LDA model had the best calibration and validation abilities with the accuracy up to 90% for . SVM got excellent seed discrimination results with classification accuracy of 91.67% and 87.5% for and , respectively. However, both LDA and SVM model failed to discriminate hard and soft seeds in , , and .

CONCLUSIONS

Multispectral imaging together with multivariate analysis could be a promising technique to identify single hard seed in some legume species with high efficiency. More legume species with physical dormancy need to be studied in future research to extend the use of multispectral imaging techniques.

摘要

背景

物理休眠(硬实种子)存在于豆科的大多数物种中,不仅对生态适应,而且对这些物种的农业实践都有重大影响。一种快速、无损且现场检测物种内硬实种子的筛选方法对于维持种子活力和种质保存以及理解种子对各种环境的适应性至关重要。在本研究中,评估了利用目标导向多元图像分析的多光谱成像作为鉴定、、、、、和中硬实种子与软种子的一种方法。应用主成分分析(PCA)、线性判别分析(LDA)和支持向量机(SVM)方法根据硬实种子和软种子的形态特征和光谱特征对其进行分类。

结果

通过多光谱成像分析的判别模型的性能因物种而异。对于、和,在独立验证数据集中可实现出色的分类。LDA模型具有最佳的校准和验证能力,对于的准确率高达90%。SVM分别对和获得了出色的种子判别结果,分类准确率分别为91.67%和87.5%。然而,LDA和SVM模型都未能区分、和中的硬实种子与软种子。

结论

多光谱成像与多变量分析相结合可能是一种高效鉴定某些豆科物种中单个硬实种子的有前景的技术。未来研究需要对更多具有物理休眠的豆科物种进行研究,以扩展多光谱成像技术的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e96/7448449/99bb2d8b1fa4/13007_2020_659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验