Suppr超能文献

利用基于核的多光谱图像分析快速测量大豆种子活力。

Rapid Measurement of Soybean Seed Viability Using Kernel-Based Multispectral Image Analysis.

机构信息

Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.

USDA-ARS Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.

出版信息

Sensors (Basel). 2019 Jan 11;19(2):271. doi: 10.3390/s19020271.

Abstract

Viability is an important quality factor influencing seed germination and crop yield. Current seed-viability testing methods rely on conventional manual inspections, which use destructive, labor-intensive and time-consuming measurements. The aim of this study is to distinguish between viable and nonviable soybean seeds, using a near-infrared (NIR) hyperspectral imaging (HSI) technique in a rapid and nondestructive manner. The data extracted from the NIR⁻HSI of viable and nonviable soybean seeds were analyzed using a partial least-squares discrimination analysis (PLS-DA) technique for classifying the viable and nonviable soybean seeds. Variable importance in projection (VIP) was used as a waveband selection method to develop a multispectral imaging model. Initially, the spectral profile of each pixel in the soybean seed images was subjected to PLS-DA analysis, which yielded a reasonable classification accuracy; however, the pixel-based classification method was not successful for high accuracy detection for nonviable seeds. Another viability detection method was then investigated: a kernel image threshold method with an optimum-detection-rate strategy. The kernel-based classification of seeds showed over 95% accuracy even when using only seven optimal wavebands selected through VIP. The results show that the proposed multispectral NIR imaging method is an effective and accurate nondestructive technique for the discrimination of soybean seed viability.

摘要

活力是影响种子发芽和作物产量的一个重要质量因素。目前的种子活力测试方法依赖于传统的人工检查,这些方法采用破坏性的、劳动密集型和耗时的测量方法。本研究旨在以快速和非破坏性的方式,利用近红外(NIR)高光谱成像(HSI)技术区分有活力和无活力的大豆种子。使用偏最小二乘判别分析(PLS-DA)技术分析从有活力和无活力大豆种子的近红外-HSI 中提取的数据,以对有活力和无活力的大豆种子进行分类。变量重要性投影(VIP)被用作波段选择方法,以开发多光谱成像模型。最初,对大豆种子图像中每个像素的光谱曲线进行 PLS-DA 分析,得到了合理的分类准确性;然而,基于像素的分类方法对于高准确性检测无活力种子并不成功。然后研究了另一种活力检测方法:带有最佳检测率策略的核图像阈值方法。基于核的种子分类法甚至在仅使用通过 VIP 选择的七个最佳波段时,准确率也超过 95%。结果表明,所提出的多光谱近红外成像方法是一种有效且准确的无损技术,可用于区分大豆种子活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d05/6359339/0e8f972bb55a/sensors-19-00271-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验