Oliver C Ryan, Westerhof Trisha M, Castro Maria G, Merajver Sofia D
Department of Internal Medicine, University of Michigan Ann Arbor; Rogel Cancer Center, University of Michigan Ann Arbor.
Rogel Cancer Center, University of Michigan Ann Arbor; Department of Neurosurgery, University of Michigan Ann Arbor; Department of Cell and Developmental Biology, University of Michigan Ann Arbor.
J Vis Exp. 2020 Aug 16(162). doi: 10.3791/61654.
Brain metastases are the most lethal cancer lesions; 10-30% of all cancers metastasize to the brain, with a median survival of only ~5-20 months, depending on the cancer type. To reduce the brain metastatic tumor burden, gaps in basic and translational knowledge need to be addressed. Major challenges include a paucity of reproducible preclinical models and associated tools. Three-dimensional models of brain metastasis can yield the relevant molecular and phenotypic data used to address these needs when combined with dedicated analysis tools. Moreover, compared to murine models, organ-on-a-chip models of patient tumor cells traversing the blood brain barrier into the brain microenvironment generate results rapidly and are more interpretable with quantitative methods, thus amenable to high throughput testing. Here we describe and demonstrate the use of a novel 3D microfluidic blood brain niche (µmBBN) platform where multiple elements of the niche can be cultured for an extended period (several days), fluorescently imaged by confocal microscopy, and the images reconstructed using an innovative confocal tomography technique; all aimed to understand the development of micro-metastasis and changes to the tumor micro-environment (TME) in a repeatable and quantitative manner. We demonstrate how to fabricate, seed, image, and analyze the cancer cells and TME cellular and humoral components, using this platform. Moreover, we show how artificial intelligence (AI) is used to identify the intrinsic phenotypic differences of cancer cells that are capable of transit through a model µmBBN and to assign them an objective index of brain metastatic potential. The data sets generated by this method can be used to answer basic and translational questions about metastasis, the efficacy of therapeutic strategies, and the role of the TME in both.
脑转移瘤是最致命的癌症病灶;所有癌症中10%-30%会转移至脑部,根据癌症类型不同,患者的中位生存期仅约5-20个月。为减轻脑转移瘤负担,基础和转化医学知识方面的差距亟待解决。主要挑战包括缺乏可重复的临床前模型及相关工具。当与专用分析工具结合时,脑转移瘤的三维模型能够产生用于满足这些需求的相关分子和表型数据。此外,与小鼠模型相比,患者肿瘤细胞穿越血脑屏障进入脑微环境的芯片器官模型能够快速产生结果,并且通过定量方法更易于解读,因此适合进行高通量测试。在此,我们描述并展示了一种新型三维微流控血脑微环境(µmBBN)平台的应用,该平台可长时间(数天)培养微环境的多个要素,通过共聚焦显微镜进行荧光成像,并使用创新的共聚焦断层扫描技术重建图像;所有这些都是为了以可重复和定量的方式了解微转移的发展以及肿瘤微环境(TME)的变化。我们展示了如何使用该平台制造、接种、成像和分析癌细胞以及TME的细胞和体液成分。此外,我们展示了如何利用人工智能(AI)识别能够通过模型µmBBN转移的癌细胞的内在表型差异,并为它们赋予脑转移潜能的客观指标。通过这种方法生成的数据集可用于回答有关转移、治疗策略疗效以及TME在两者中作用的基础和转化医学问题。