Suppr超能文献

使用芯片上器官3D模型、机器学习和共聚焦断层扫描对脑转移瘤微环境进行量化。

Quantifying the Brain Metastatic Tumor Micro-Environment using an Organ-On-A Chip 3D Model, Machine Learning, and Confocal Tomography.

作者信息

Oliver C Ryan, Westerhof Trisha M, Castro Maria G, Merajver Sofia D

机构信息

Department of Internal Medicine, University of Michigan Ann Arbor; Rogel Cancer Center, University of Michigan Ann Arbor.

Rogel Cancer Center, University of Michigan Ann Arbor; Department of Neurosurgery, University of Michigan Ann Arbor; Department of Cell and Developmental Biology, University of Michigan Ann Arbor.

出版信息

J Vis Exp. 2020 Aug 16(162). doi: 10.3791/61654.

Abstract

Brain metastases are the most lethal cancer lesions; 10-30% of all cancers metastasize to the brain, with a median survival of only ~5-20 months, depending on the cancer type. To reduce the brain metastatic tumor burden, gaps in basic and translational knowledge need to be addressed. Major challenges include a paucity of reproducible preclinical models and associated tools. Three-dimensional models of brain metastasis can yield the relevant molecular and phenotypic data used to address these needs when combined with dedicated analysis tools. Moreover, compared to murine models, organ-on-a-chip models of patient tumor cells traversing the blood brain barrier into the brain microenvironment generate results rapidly and are more interpretable with quantitative methods, thus amenable to high throughput testing. Here we describe and demonstrate the use of a novel 3D microfluidic blood brain niche (µmBBN) platform where multiple elements of the niche can be cultured for an extended period (several days), fluorescently imaged by confocal microscopy, and the images reconstructed using an innovative confocal tomography technique; all aimed to understand the development of micro-metastasis and changes to the tumor micro-environment (TME) in a repeatable and quantitative manner. We demonstrate how to fabricate, seed, image, and analyze the cancer cells and TME cellular and humoral components, using this platform. Moreover, we show how artificial intelligence (AI) is used to identify the intrinsic phenotypic differences of cancer cells that are capable of transit through a model µmBBN and to assign them an objective index of brain metastatic potential. The data sets generated by this method can be used to answer basic and translational questions about metastasis, the efficacy of therapeutic strategies, and the role of the TME in both.

摘要

脑转移瘤是最致命的癌症病灶;所有癌症中10%-30%会转移至脑部,根据癌症类型不同,患者的中位生存期仅约5-20个月。为减轻脑转移瘤负担,基础和转化医学知识方面的差距亟待解决。主要挑战包括缺乏可重复的临床前模型及相关工具。当与专用分析工具结合时,脑转移瘤的三维模型能够产生用于满足这些需求的相关分子和表型数据。此外,与小鼠模型相比,患者肿瘤细胞穿越血脑屏障进入脑微环境的芯片器官模型能够快速产生结果,并且通过定量方法更易于解读,因此适合进行高通量测试。在此,我们描述并展示了一种新型三维微流控血脑微环境(µmBBN)平台的应用,该平台可长时间(数天)培养微环境的多个要素,通过共聚焦显微镜进行荧光成像,并使用创新的共聚焦断层扫描技术重建图像;所有这些都是为了以可重复和定量的方式了解微转移的发展以及肿瘤微环境(TME)的变化。我们展示了如何使用该平台制造、接种、成像和分析癌细胞以及TME的细胞和体液成分。此外,我们展示了如何利用人工智能(AI)识别能够通过模型µmBBN转移的癌细胞的内在表型差异,并为它们赋予脑转移潜能的客观指标。通过这种方法生成的数据集可用于回答有关转移、治疗策略疗效以及TME在两者中作用的基础和转化医学问题。

相似文献

10
Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.微流控平台上的肿瘤微环境仿生模型。
Adv Healthc Mater. 2017 Aug;6(15). doi: 10.1002/adhm.201700196. Epub 2017 May 24.

引用本文的文献

1
Organ-on-a-Chip Applications in Microfluidic Platforms.微流控平台中的器官芯片应用
Micromachines (Basel). 2025 Feb 10;16(2):201. doi: 10.3390/mi16020201.
3
Tumor-on-chip platforms for breast cancer continuum concept modeling.用于乳腺癌连续体概念建模的芯片肿瘤平台。
Front Bioeng Biotechnol. 2024 Oct 2;12:1436393. doi: 10.3389/fbioe.2024.1436393. eCollection 2024.
5
Microphysiological systems as models for immunologically 'cold' tumors.作为免疫“冷”肿瘤模型的微生理系统
Front Cell Dev Biol. 2024 Apr 22;12:1389012. doi: 10.3389/fcell.2024.1389012. eCollection 2024.
7
Organ-on-a-chip meets artificial intelligence in drug evaluation.器官芯片与药物评价中的人工智能相遇。
Theranostics. 2023 Aug 15;13(13):4526-4558. doi: 10.7150/thno.87266. eCollection 2023.
10
Liquid biopsies to occult brain metastasis.液体活检检测隐匿性脑转移。
Mol Cancer. 2022 May 10;21(1):113. doi: 10.1186/s12943-022-01577-x.

本文引用的文献

1
History of the Marching Cubes Algorithm.移动立方体算法的历史。
IEEE Comput Graph Appl. 2020 Mar-Apr;40(2):8-15. doi: 10.1109/MCG.2020.2971284.
9
Organ-on-a-chip devices advance to market.器官芯片设备推向市场。
Lab Chip. 2017 Jul 11;17(14):2395-2420. doi: 10.1039/c6lc01554a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验