Suppr超能文献

疫情危机期间瑞德西韦治疗新型冠状病毒肺炎患者的中国临床试验数据监测

Data Monitoring for the Chinese Clinical Trials of Remdesivir in Treating Patients with COVID-19 During the Pandemic Crisis.

作者信息

Shih Weichung J, Yao Chen, Xie Tai

机构信息

Rutgers University School of Public Health, Piscataway, NJ, USA.

Peking University Clinical Research Institute, Beijing, China.

出版信息

Ther Innov Regul Sci. 2020 Sep;54(5):1236-1255. doi: 10.1007/s43441-020-00159-7. Epub 2020 May 16.

Abstract

Two phase-III, double-blind, randomized clinical trials of remdesivir plus SOC (standard of care) versus placebo plus SOC have been conducted in Wuhan hospitals by Chinese investigators during the urgent COVID-19 epidemic [ClincalTrials.gov NCT04257656 and NCT04252664]. These trials have been highly anticipated worldwide. We expect investigators of the trials will soon report the clinical and laboratory findings from the medical perspective. This manuscript provides documentary style information on the process of monitoring key data and making recommendations to the sponsor and investigators based on analytical insights when dealing with the emergent situation from the statistical viewpoint. Having monitored data sequentially from 237 patients, we comment on the strength and weakness of the study design and suggest the treatment effect of remdesivir on severe COVID-19 cases. Our experience with using the Dynamic Data Monitoring (DDM) tool has demonstrated its efficiency and reliability in supporting DSMB's instantaneous review of essential data during the emergent situation. DDM, when used properly by disciplined statisticians, has shown its capability of exploring the trial data flexibly and, in the meantime, protecting the trial's scientific integrity.

摘要

在新冠疫情紧急期间,中国研究人员在武汉的医院开展了两项三期双盲随机临床试验,比较瑞德西韦加标准治疗(SOC)与安慰剂加标准治疗的效果[临床研究网站(ClinicalTrials.gov)标识符NCT04257656和NCT04252664]。这些试验在全球备受期待。我们期待试验的研究人员很快能从医学角度报告临床和实验室结果。本手稿以纪实风格提供了有关监测关键数据过程的信息,并基于统计视角的分析见解,在应对紧急情况时向申办方和研究人员提出建议。在对237名患者的数据进行序贯监测后,我们对研究设计的优缺点进行了评论,并提出了瑞德西韦对重症新冠病例的治疗效果。我们使用动态数据监测(DDM)工具的经验证明了其在紧急情况下支持数据安全监测委员会(DSMB)即时审查关键数据方面的效率和可靠性。由训练有素的统计学家正确使用时,DDM已显示出其灵活探索试验数据的能力,同时保护试验的科学完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9fa/7458948/847e66227324/43441_2020_159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验