Suppr超能文献

对称几何计算机断层扫描的傅里叶特性及其神经网络线性图重建

Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network.

作者信息

Zhang Tao, Zhang Li, Chen Zhiqiang, Xing Yuxiang, Gao Hewei

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4445-4457. doi: 10.1109/TMI.2020.3020720. Epub 2020 Nov 30.

Abstract

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.

摘要

在这项工作中,我们研究了在静止配置下具有线性分布源和探测器的对称几何计算机断层扫描(SGCT)的傅里叶特性。以简单的数学形式建立了SGCT加权投影的一维傅里叶变换与变形物体的二维傅里叶变换之间的联系(即SGCT的傅里叶切片定理)。基于其傅里叶切片定理及其在傅里叶空间中的独特数据采样,推导了一种基于线性图的SGCT傅里叶重建方法。我们证明,整个线性图重建过程可以作为已知算子嵌入到端到端神经网络中。作为一种基于学习的方法,所提出的线性图网络具有通过结合投影域中的权重学习和图像域中的损失最小化来提高非理想成像场景(例如有限角度SGCT)的CT图像质量的能力。在SGCT原型平台上进行的数值模拟和物理实验表明,我们提出的基于线性图的方法可以从双SGCT扫描中实现准确重建,并且与滤波反投影类型的重建相比,可以大大降低计算复杂度。当投影数据完整时,线性图网络实现了准确重建,并且显著抑制了使用临床CT数据集模拟的有限角度SGCT扫描产生的图像伪影,所选感兴趣区域的平均CT数误差从67.7亨氏单位(HU)降至28.7 HU,整体图像的平均归一化均方误差从4.21e-3降至2.65e-3。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验