Nie Yunlong, Opoku Eugene, Yasmin Laila, Song Yin, Wang Jie, Wu Sidi, Scarapicchia Vanessa, Gawryluk Jodie, Wang Liangliang, Cao Jiguo, Nathoo Farouk S
Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada.
Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
Stat Appl Genet Mol Biol. 2020 Aug 31;19(3):/j/sagmb.2020.19.issue-3/sagmb-2019-0058/sagmb-2019-0058.xml. doi: 10.1515/sagmb-2019-0058.
We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.
我们开展了一项影像遗传学研究,以探讨在阿尔茨海默病和轻度认知障碍背景下,默认模式网络(DMN)中的有效脑连接性如何与遗传学相关。我们对来自阿尔茨海默病神经影像倡议(ADNI)数据库的111名受试者样本的纵向静息态功能磁共振成像(rs-fMRI)和基因数据进行了分析,该样本共有319次rs-fMRI扫描。将动态因果模型(DCM)应用于rs-fMRI扫描,以估计DMN内的有效脑连接性,并将其与一组单核苷酸多态性(SNP)相关联,该组SNP包含在一个经验性疾病受限集中,该集是从仅拥有全基因组数据的663名ADNI受试者的样本外数据中获得的。我们使用线性混合效应(LME)模型以及标量函数回归(FSR),将使用频谱DCM估计的纵向有效脑连接性与SNP进行关联。在这两种情况下,我们都实施了参数自举法来检验SNP系数,并与从渐近零分布获得的p值进行比较。在两个网络中,在初始q值阈值为0.1时均未发现效应。我们报告了具有相对较高排名的探索性关联模式,这些模式对FSR和LME所做的不同假设具有稳定性。