Suppr超能文献

工程化具有大斯托克斯位移的双重识别比率型荧光纳米传感器,可实现对致病菌的单细胞水平精确跟踪。

Engineering of a Dual-Recognition Ratiometric Fluorescent Nanosensor with a Remarkably Large Stokes Shift for Accurate Tracking of Pathogenic Bacteria at the Single-Cell Level.

机构信息

Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.

State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

出版信息

Anal Chem. 2020 Oct 6;92(19):13396-13404. doi: 10.1021/acs.analchem.0c02762. Epub 2020 Sep 10.

Abstract

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium () as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of , the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to , which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.

摘要

快速、准确、可靠且无风险地在单细胞水平上追踪病原体对于实现有效的源头控制和预防微生物传染病的爆发至关重要。我们首次报道了一种有前途的方法,即将显著的大斯托克斯位移和双重识别的概念集成到一个单一的基质中,开发出一种具有速度、成本效益、稳定性、超高特异性和灵敏度的病原体刺激响应比率荧光纳米探针。作为概念验证,我们选择革兰氏阳性菌()作为目标分析物模型,该模型很容易与它的识别适体和广谱糖肽抗生素万古霉素(Van)结合。为了提高特异性和缩短样品到答案的时间,我们采用经典的非共价π-π堆积相互作用作为驱动力,触发万古霉素和适体双重功能化近红外(NIR)荧光Apt-Van-QDs与未报道的蓝色荧光富π电子碳纳米粒子(CNPs)表面的结合,实现了刺激响应的比率纳米探针 Apt-Van-QDs@CNPs。在 Apt-Van-QDs@CNPs 的组装中,蓝色的 CNPs(能量供体)和 NIR Apt-Van-QDs(能量受体)变得接近,允许发生荧光共振能量转移(FRET)过程,导致 CNPs 在 ∼465nm 处的蓝色荧光显著猝灭,而 Apt-Van-QDs 在 ∼725nm 处的近红外荧光明显增强。在存在的情况下,CNPs 到 Apt-Van-QDs 的 FRET 过程被破坏,导致纳米探针 Apt-Van-QDs@CNPs 对表现出比率荧光响应,其具有约 260nm 的大斯托克斯位移和快速的样品到答案检测时间(约 30.0 分钟)。正如预期的那样,该纳米探针 Apt-Van-QDs@CNPs 对具有良好检测限为 1.0CFU/mL 的比率荧光检测表现出超高特异性,允许在单细胞水平上进行检测。此外,我们还对实际样品中的进行了精确分析,结果令人满意。我们相信,这项工作为在单细胞水平上早期快速现场准确筛选病原体提供了一种新的见解,特别是在当今 COVID-19 全球传播期间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验