Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23096-23105. doi: 10.1073/pnas.2009786117. Epub 2020 Aug 31.
The β-adrenergic receptor (βAR) is a prototypical G protein-coupled receptor (GPCR) that preferentially couples to the stimulatory G protein G and stimulates cAMP formation. Functional studies have shown that the βAR also couples to inhibitory G protein G, activation of which inhibits cAMP formation [R. P. Xiao, Sci. STKE , re15 (2001)]. A crystal structure of the βAR-G complex revealed the interaction interface of βAR-G and structural changes upon complex formation [S. G. Rasmussen et al., Nature 477, 549-555 (2011)], yet, the dynamic process of the βAR signaling through G and its preferential coupling to G over G is still not fully understood. Here, we utilize solution nuclear magnetic resonance (NMR) spectroscopy and supporting molecular dynamics (MD) simulations to monitor the conformational changes in the G protein coupling interface of the βAR in response to the full agonist BI-167107 and G and G These results show that BI-167107 stabilizes conformational changes in four transmembrane segments (TM4, TM5, TM6, and TM7) prior to coupling to a G protein, and that the agonist-bound receptor conformation is different from the G protein coupled state. While most of the conformational changes observed in the βAR are qualitatively the same for G and G, we detected distinct differences between the βAR-G and the βAR-G complex in intracellular loop 2 (ICL2). Interactions with ICL2 are essential for activation of G These differences between the βAR-G and βAR-G complexes in ICL2 may be key determinants for G protein coupling selectivity.
β-肾上腺素能受体(βAR)是一种典型的 G 蛋白偶联受体(GPCR),它优先与刺激型 G 蛋白 G 偶联,并刺激 cAMP 的形成。功能研究表明,βAR 也与抑制型 G 蛋白 G 偶联,激活 G 抑制 cAMP 的形成[R.P.Xiao, Sci.STKE, re15 (2001)]。βAR-G 复合物的晶体结构揭示了 βAR-G 的相互作用界面和复合物形成时的结构变化[S.G.Rasmussen 等人,Nature 477, 549-555 (2011)],然而,βAR 通过 G 进行信号传递的动态过程及其对 G 的优先偶联而非 G 的机制仍不完全清楚。在这里,我们利用溶液核磁共振(NMR)光谱和支持的分子动力学(MD)模拟来监测βAR 中 G 蛋白偶联界面的构象变化,以响应完全激动剂 BI-167107 和 G 和 G。这些结果表明,BI-167107 在与 G 蛋白偶联之前稳定了四个跨膜片段(TM4、TM5、TM6 和 TM7)中的构象变化,并且激动剂结合的受体构象不同于 G 蛋白偶联状态。虽然在 G 和 G 中观察到的大多数构象变化在性质上是相同的,但我们在细胞内环 2(ICL2)中检测到了βAR-G 和βAR-G 复合物之间的明显差异。与 ICL2 的相互作用对于 G 的激活是必不可少的。βAR-G 和βAR-G 复合物在 ICL2 中的这些差异可能是 G 蛋白偶联选择性的关键决定因素。