Suppr超能文献

非鸟类恐龙体重估计的准确性和精确性。

The accuracy and precision of body mass estimation in non-avian dinosaurs.

作者信息

Campione Nicolás E, Evans David C

机构信息

Palaeoscience Research Centre, University of New England, Armidale, New South Wales, 2351, Australia.

Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada.

出版信息

Biol Rev Camb Philos Soc. 2020 Dec;95(6):1759-1797. doi: 10.1111/brv.12638. Epub 2020 Sep 1.

Abstract

Inferring the body mass of fossil taxa, such as non-avian dinosaurs, provides a powerful tool for interpreting physiological and ecological properties, as well as the ability to study these traits through deep time and within a macroevolutionary context. As a result, over the past 100 years a number of studies advanced methods for estimating mass in dinosaurs and other extinct taxa. These methods can be categorized into two major approaches: volumetric-density (VD) and extant-scaling (ES). The former receives the most attention in non-avian dinosaurs and advanced appreciably over the last century: from initial physical scale models to three-dimensional (3D) virtual techniques that utilize scanned data obtained from entire skeletons. The ES approach is most commonly applied to extinct members of crown clades but some equations are proposed and utilized in non-avian dinosaurs. Because both approaches share a common goal, they are often viewed in opposition to one another. However, current palaeobiological research problems are often approach specific and, therefore, the decision to utilize a VD or ES approach is largely question dependent. In general, biomechanical and physiological studies benefit from the full-body reconstruction provided through a VD approach, whereas large-scale evolutionary and ecological studies require the extensive data sets afforded by an ES approach. This study summarizes both approaches to body mass estimation in stem-group taxa, specifically non-avian dinosaurs, and provides a comparative quantitative framework to reciprocally illuminate and corroborate VD and ES approaches. The results indicate that mass estimates are largely consistent between approaches: 73% of VD reconstructions occur within the expected 95% prediction intervals of the ES relationship. However, almost three quarters of outliers occur below the lower 95% prediction interval, indicating that VD mass estimates are, on average, lower than would be expected given their stylopodial circumferences. Inconsistencies (high residual and per cent prediction deviation values) are recovered to a varying degree among all major dinosaurian clades along with an overall tendency for larger deviations between approaches among small-bodied taxa. Nonetheless, our results indicate a strong corroboration between recent iterations of the VD approach based on 3D specimen scans suggesting that our current understanding of size in dinosaurs, and hence its biological correlates, has improved over time. We advance that VD and ES approaches have fundamentally (metrically) different advantages and, hence, the comparative framework used and advocated here combines the accuracy afforded by ES with the precision provided by VD and permits the rapid identification of discrepancies with the potential to open new areas of discussion.

摘要

推断化石类群(如非鸟类恐龙)的体重,为解释生理和生态特性提供了强大工具,也有助于在漫长时间和宏观进化背景下研究这些特征。因此,在过去的100年里,许多研究推进了恐龙和其他已灭绝类群体重估算方法。这些方法可分为两种主要途径:体积密度法(VD)和现存比例法(ES)。前者在非鸟类恐龙研究中受到最多关注,且在上个世纪有了显著进展:从最初的实体比例模型到利用从整个骨架获取的扫描数据的三维(3D)虚拟技术。ES方法最常用于冠群分支的已灭绝成员,但也有一些方程被提出并应用于非鸟类恐龙。由于这两种方法有共同目标,它们常被视为相互对立。然而,当前古生物学研究问题往往具有特定的研究途径,因此,采用VD或ES方法的决定很大程度上取决于问题本身。一般来说,生物力学和生理学研究受益于VD方法提供的全身重建,而大规模进化和生态学研究需要ES方法提供的广泛数据集。本研究总结了干群类群(特别是非鸟类恐龙)体重估算的两种方法,并提供了一个比较定量框架,以相互阐明和证实VD和ES方法。结果表明,两种方法的体重估算在很大程度上是一致的:73%的VD重建结果落在ES关系预期的95%预测区间内。然而,几乎四分之三的异常值出现在95%预测区间下限以下,这表明考虑到它们的肢体周长,VD体重估算平均低于预期。在所有主要恐龙类群中,不一致性(高残差和百分比预测偏差值)在不同程度上都存在,并且在小型类群中,两种方法之间的偏差总体上有更大的趋势。尽管如此,我们的结果表明基于3D标本扫描的VD方法的最新迭代之间有很强的相互印证,这表明我们目前对恐龙体型及其生物学相关性的理解随着时间推移有所改善。我们认为VD和ES方法在根本上(在度量方面)有不同的优势,因此,这里使用和倡导的比较框架将ES提供的准确性与VD提供的精确性结合起来,并允许快速识别差异,有可能开辟新的讨论领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验