Wright M A, Cavanaugh T J, Pierce S E
Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Harvard Extension School, Harvard University, Cambridge, Massachusetts 02138, USA.
Integr Org Biol. 2024 Sep 13;6(1):obae034. doi: 10.1093/iob/obae034. eCollection 2024.
Size has an impact on various aspects of an animal's biology, including physiology, biomechanics, and ecology. Accurately and precisely estimating size, in particular body mass, is therefore a core objective of paleobiologists. Two approaches for estimating body mass are common: whole-body volumetric models and individual element-scaling (e.g., bones, teeth). The latter has been argued to be more accurate, while the former more precise. Here, we use minimum convex hulls (MCHs) to generate a predictive volumetric model for estimating body mass across a broad taxonomic and size range (127 g - 2735 kg). We compare our MCH model to stylopodial-scaling, incorporating data from the literature, and find that MCH body mass estimation is both more accurate and more precise than stylopodial estimation. An explanation for the difference between methods is that reptile and mammal stylopod circumference and length dimensions scale differentially (slope 1.179 ± 0.102 vs. 1.038 ± 0.031, respectively), such that reptiles have more robust bones for a given size. Consequently, a mammalian-weighted stylopodial-scaling sample overestimates the body mass of larger reptiles, and this error increases with size. We apply both estimation equations to a sample of 12 Permo-Triassic tetrapods and find that stylopodial-scaling consistently estimates a higher body mass than MCH estimation, due to even more robust bones in extinct species (slope = 1.319 ± 0.213). Finally, we take advantage of our MCH models to explore constraints regarding the position of the center of mass (CoM) and find that relative body proportions (i.e., skull:tail ratio) influence CoM position differently in mammals, crocodylians, and Permo-Triassic tetrapods. Further, we find that clade-specific body segment expansion factors do not affect group comparisons but may be important for individual specimens with rather disproportionate bodies (e.g., the small-headed and large-tailed ). Our findings suggest that the whole-body volumetric approach is better suited for estimating body mass than element-scaling when anatomies are beyond the scope of the sample used to generate the scaling equations and provides added benefits such as the ability to measure inertial properties.
体型会对动物生物学的各个方面产生影响,包括生理学、生物力学和生态学。因此,准确而精确地估计体型,尤其是体重,是古生物学家的核心目标。估计体重的两种常见方法是:全身体积模型和个体元素缩放法(如骨骼、牙齿)。有人认为后者更准确,而前者更精确。在此,我们使用最小凸包(MCH)来生成一个预测体积模型,以估计广泛分类和体型范围内(127克 - 2735千克)的体重。我们将我们的MCH模型与纳入文献数据的肱骨缩放法进行比较,发现MCH体重估计比肱骨估计既更准确又更精确。方法之间差异的一个解释是,爬行动物和哺乳动物的肱骨周长和长度尺寸缩放方式不同(斜率分别为1.179 ± 0.102和1.038 ± 0.031),以至于对于给定体型,爬行动物的骨骼更粗壮。因此,一个以哺乳动物为权重的肱骨缩放样本会高估大型爬行动物的体重,并且这种误差会随着体型增大而增加。我们将这两种估计方程应用于12个二叠纪 - 三叠纪四足动物样本,发现由于灭绝物种的骨骼甚至更粗壮(斜率 = 1.319 ± 0.213),肱骨缩放法始终比MCH估计法估计出更高的体重。最后,我们利用我们的MCH模型来探索关于质心(CoM)位置的限制,发现相对身体比例(即头骨:尾巴比例)在哺乳动物、鳄类和二叠纪 - 三叠纪四足动物中对质心位置的影响不同。此外,我们发现特定类群的身体节段扩展因子不影响群体比较,但对于身体比例相当不协调的个体标本(如小头大尾的标本)可能很重要。我们的研究结果表明,当解剖结构超出用于生成缩放方程的样本范围时,全身体积法比元素缩放法更适合估计体重,并且还具有诸如能够测量惯性属性等额外优势。