Suppr超能文献

结合计算建模与反应动力学实验阐明催化反应活性位本质。

Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the Nature of the Active Site in Catalysis.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

出版信息

Acc Chem Res. 2020 Sep 15;53(9):1893-1904. doi: 10.1021/acs.accounts.0c00340. Epub 2020 Sep 1.

Abstract

Microkinetic modeling based on density functional theory (DFT) derived energetics is important for addressing fundamental questions in catalysis. The quantitative fidelity of microkinetic models (MKMs), however, is often insufficient to conclusively infer the mechanistic details of a specific catalytic system. This can be attributed to a number of factors such as an incorrect model of the active site for which DFT calculations are performed, deficiencies in the hypothesized reaction mechanism, inadequate consideration of the surface environment under reaction conditions, and intrinsic errors in the DFT exchange-correlation functional. Despite these limitations, we aim at developing a rigorous understanding of the reaction mechanism and of the nature of the active site for heterogeneous catalytic chemistries under reaction conditions. By achieving parity between experimental and modeling outcomes through robust parameter estimation and by ensuring coverage-consistency between DFT calculations and MKM predictions, it is possible to systematically refine the mechanistic model and, thereby, our understanding of the catalytic active site .Our general approach consists of developing informed MKM for a given active site and then re-estimating the energies of the transition and intermediate states so that the model predictions match quantities measured in reaction kinetics experiments. If (i) model-experiment parity is high, (ii) the adjustments to the DFT-derived energetics for a given model of the active site are rationalized within the errors of standard DFT exchange-correlation functionals, and (iii) the resultant MKM predicts surface coverages that are consistent with those assumed in the DFT calculations used to initialize the MKM, we conclude that we have correctly identified the active site and the reaction mechanism. If one or more of these requirements are not met, we iteratively refine our model by updating our hypothesis for the structure of the active site and/or by incorporating coverage effects, until we obtain a high-fidelity coverage-self-consistent MKM whose final kinetic and thermodynamic parameters are within error of the values derived from DFT.Using the catalytic reaction of formic acid (FA, HCOOH) decomposition over transition-metal catalysts as an example, here we provide an account of how we applied this algorithm to study this chemistry on powder Au/SiC and Pt/C catalysts. For the case of Au catalysts, on which the FA decomposition occurred exclusively through the dehydrogenation reaction (HCOOH → CO+H), our approach was used to iteratively refine the model starting from the (111) facet until we found that specific ensembles of Au atoms present in sub-nanometer clusters can describe the active site for this catalysis. For the case of Pt catalysts, wherein both dehydrogenation (HCOOH → CO + H) and dehydration (HCOOH → CO + HO) reactions were active, our approach identified that a partially CO*-covered (111) surface serves as the active site and that CO*-assisted steps contributed substantially to the overall FA decomposition activity. Finally, we suggest that once the active site and the mechanism are conclusively identified, the model can subsequently serve as a high-quality basis for designing specific goal-oriented experiments and improved catalysts.

摘要

基于密度泛函理论(DFT)推导的能量的微观动力学建模对于解决催化中的基本问题非常重要。然而,微观动力学模型(MKM)的定量保真度往往不足以最终推断出特定催化体系的机械细节。这可以归因于许多因素,例如用于进行 DFT 计算的活性位点的不正确模型、假设的反应机制的缺陷、在反应条件下对表面环境的考虑不充分以及 DFT 交换相关函数中的固有误差。尽管存在这些限制,但我们旨在通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。DFT 交换相关功能中的固有误差。尽管存在这些限制,但我们旨在通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。DFT 交换相关功能中的固有误差。尽管存在这些限制,但我们旨在通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。通过稳健的参数估计在实验和建模结果之间实现一致性,并通过确保 DFT 计算和 MKM 预测之间的覆盖率一致性来开发对异相催化化学在反应条件下的反应机制和活性位点性质的严格理解。DFT 交换相关功能中的固有误差。

使用甲酸(FA,HCOOH)分解在过渡金属催化剂上的催化反应作为示例,本文提供了我们如何应用该算法来研究粉末 Au/SiC 和 Pt/C 催化剂上的这种化学的说明。对于 FA 分解仅通过脱氢反应(HCOOH → CO + H)发生的 Au 催化剂,我们的方法从(111)面开始迭代地改进模型,直到发现亚纳米簇中存在的特定 Au 原子集合可以描述该催化的活性位点。对于 Pt 催化剂,其中脱氢(HCOOH → CO + H)和脱水(HCOOH → CO + HO)反应均为活性,我们的方法确定了部分 CO覆盖的(111)表面作为活性位点,并且 CO辅助步骤对整体 FA 分解活性贡献很大。最后,我们建议一旦确定了活性位点和机制,该模型可以随后作为设计特定目标实验和改进催化剂的高质量基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验