Suppr超能文献

基于胸部X光图像的深度学习模型构建深度肺炎框架

Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images.

作者信息

Elshennawy Nada M, Ibrahim Dina M

机构信息

Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta 31733, Egypt.

Department of Information Technology, College of Computer, Qassim University, Buraydah 52361, Saudi Arabia.

出版信息

Diagnostics (Basel). 2020 Aug 28;10(9):649. doi: 10.3390/diagnostics10090649.

Abstract

Pneumonia is a contagious disease that causes ulcers of the lungs, and is one of the main reasons for death among children and the elderly in the world. Several deep learning models for detecting pneumonia from chest X-ray images have been proposed. One of the extreme challenges has been to find an appropriate and efficient model that meets all performance metrics. Proposing efficient and powerful deep learning models for detecting and classifying pneumonia is the main purpose of this work. In this paper, four different models are developed by changing the used deep learning method; two pre-trained models, ResNet152V2 and MobileNetV2, a Convolutional Neural Network (CNN), and a Long Short-Term Memory (LSTM). The proposed models are implemented and evaluated using Python and compared with recent similar research. The results demonstrate that our proposed deep learning framework improves accuracy, precision, F1-score, recall, and Area Under the Curve (AUC) by 99.22%, 99.43%, 99.44%, 99.44%, and 99.77%, respectively. As clearly illustrated from the results, the ResNet152V2 model outperforms other recently proposed works. Moreover, the other proposed models-MobileNetV2, CNN, and LSTM-CNN-achieved results with more than 91% in accuracy, recall, F1-score, precision, and AUC, and exceed the recently introduced models in the literature.

摘要

肺炎是一种会引发肺部溃疡的传染病,是全球儿童和老年人主要的死亡原因之一。已经提出了几种用于从胸部X光图像中检测肺炎的深度学习模型。其中一个极具挑战性的问题是找到一个能满足所有性能指标的合适且高效的模型。提出高效且强大的用于检测和分类肺炎的深度学习模型是这项工作的主要目的。在本文中,通过改变所使用的深度学习方法开发了四种不同的模型:两种预训练模型,即ResNet152V2和MobileNetV2,一个卷积神经网络(CNN),以及一个长短期记忆网络(LSTM)。所提出的模型使用Python实现并进行评估,并与近期的类似研究进行比较。结果表明,我们提出的深度学习框架分别将准确率、精确率、F1分数、召回率和曲线下面积(AUC)提高了99.22%、99.43%、99.44%、99.44%和99.77%。从结果中可以清楚地看出,ResNet152V2模型优于其他近期提出的研究成果。此外,其他提出的模型——MobileNetV2、CNN和LSTM-CNN——在准确率、召回率、F1分数、精确率和AUC方面都取得了超过91%的成绩,并且超过了文献中最近引入的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验