Suppr超能文献

基于胸部X光图像利用深度学习算法进行COVID-19检测

COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images.

作者信息

Akter Shamima, Shamrat F M Javed Mehedi, Chakraborty Sovon, Karim Asif, Azam Sami

机构信息

Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA 22030, USA.

Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh.

出版信息

Biology (Basel). 2021 Nov 13;10(11):1174. doi: 10.3390/biology10111174.

Abstract

COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of millions of people around the globe in less than two years. Since the virus initially affects the lungs of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic, reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural Networks (CNNs) proved to be quite successful in the classification of medical images. In this study, an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images was used. The original data were then augmented to increase the data sample to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation of the models was demonstrated using a confusion matrix. It was observed that the modified MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The second-best performance was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally, the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.

摘要

新冠病毒病(COVID-19)被视为21世纪最致命的病毒,在不到两年的时间里已导致全球数百万人死亡。由于该病毒最初会感染患者的肺部,胸部X光成像有助于进行有效诊断。任何能够自动、可靠且准确地筛查COVID-19感染的方法都将有助于快速检测并减少医护人员接触该病毒的风险。过去,卷积神经网络(CNN)在医学图像分类方面已被证明相当成功。在本研究中,提出了一种使用CNN从胸部X光图像中检测COVID-19的自动深度学习分类方法。使用了一个由3616张COVID-19胸部X光图像和10192张健康胸部X光图像组成的数据集。然后对原始数据进行增强,将数据样本增加到26000张COVID-19和26000张健康X光图像。在将数据集应用于CNN模型之前,使用直方图均衡化、频谱、灰度、青色对其进行增强,并使用非对比受限自适应直方图均衡化(NCLAHE)进行归一化。最初使用该数据集,通过采用11种现有的CNN模型来检测COVID-19的症状;这些模型包括VGG16、VGG19、MobileNetV2、InceptionV3、NFNet、ResNet50、ResNet101、DenseNet、EfficientNetB7、AlexNet和GoogLeNet。从这些模型中,选择了MobileNetV2进行进一步修改,以获得更高的COVID-19检测准确率。使用混淆矩阵对模型的性能进行评估。结果发现,本研究中提出的改进后的MobileNetV2模型在对COVID-19和健康胸部X光进行分类时,在所有实施的CNN模型中准确率最高,达到了98%。预训练的MobileNetV2模型取得了第二好的性能,准确率为97%,其次是VGG19和ResNet101,这两个模型的准确率均为95%。该研究比较了各模型的编译时间。所提出的模型所需编译时间最少,为2小时50分21秒。最后,进行了威尔科克森符号秩检验以检验统计显著性。结果表明,所提出的方法能够比现有方法更有效地从胸部X光图像中识别出感染症状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdfd/8614951/299aa864e621/biology-10-01174-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验