Suppr超能文献

离散分数阶杜芬系统:混沌、0-1测试、C复杂度、熵及控制

The discrete fractional duffing system: Chaos, 0-1 test, C complexity, entropy, and control.

作者信息

Ouannas Adel, Khennaoui Amina-Aicha, Momani Shaher, Pham Viet-Thanh

机构信息

Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Laarbi Tebessi, Tebessa 12002, Algeria.

Laboratory of Dynamical Systems and Control, University of Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria.

出版信息

Chaos. 2020 Aug;30(8):083131. doi: 10.1063/5.0005059.

Abstract

In this paper, we study the dynamics and control of a Caputo fractional difference form of the Duffing map. We use phase plots, bifurcation diagrams, and Lyapunov exponents to establish the existence of chaos over a wide range of fractional orders and examine the nature of the dynamics. Also, we present the 0-1 test to detect chaos and C complexity, which is an alternative nonlinear statistical measure that can quantify the regularity of a time series. In addition, we measure the approximate entropy to see the performance of our numerical results. Through phase plots and bifurcation diagrams, it is shown that the proposed fractional map exhibits a range of different dynamical behaviors including chaos and coexisting attractors. A one-dimensional feedback stabilization controller is proposed. The asymptotic convergence of the proposed controller is established by means of the stability theory of linear fractional order discrete-time systems. Simulation results have been carried out to illustrate the findings of the study.

摘要

在本文中,我们研究了达夫映射的卡普托分数阶差分形式的动力学与控制。我们使用相图、分岔图和李雅普诺夫指数来确定在广泛的分数阶范围内混沌的存在,并研究动力学的性质。此外,我们提出了用于检测混沌和C复杂度的0-1检验,C复杂度是一种可量化时间序列规律性的非线性统计量度。另外,我们通过测量近似熵来考察数值结果的性能。通过相图和分岔图表明,所提出的分数阶映射展现出一系列不同的动力学行为,包括混沌和共存吸引子。提出了一种一维反馈镇定控制器。借助线性分数阶离散时间系统的稳定性理论,建立了所提控制器的渐近收敛性。已进行仿真结果以说明该研究的发现。

相似文献

2
Fractional Form of a Chaotic Map without Fixed Points: Chaos, Entropy and Control.
Entropy (Basel). 2018 Sep 20;20(10):720. doi: 10.3390/e20100720.
3
Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control.
Entropy (Basel). 2020 Nov 27;22(12):1344. doi: 10.3390/e22121344.
4
The fractional-order discrete COVID-19 pandemic model: stability and chaos.
Nonlinear Dyn. 2023;111(1):965-983. doi: 10.1007/s11071-022-07766-z. Epub 2022 Aug 15.
6
Chaos in fractional-order discrete neural networks with application to image encryption.
Neural Netw. 2020 May;125:174-184. doi: 10.1016/j.neunet.2020.02.008. Epub 2020 Feb 22.

引用本文的文献

1
Application of 0-1 test for chaos on forward converter to study the nonlinear dynamics.
Sci Rep. 2022 Sep 20;12(1):15696. doi: 10.1038/s41598-022-19667-7.
2
A Fractional-Order Sinusoidal Discrete Map.
Entropy (Basel). 2022 Feb 23;24(3):320. doi: 10.3390/e24030320.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验