Zambrano-Serrano Ernesto, Platas-Garza Miguel Angel, Posadas-Castillo Cornelio, Arellano-Delgado Adrian, Cruz-Hernández César
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico.
National Council of Science and Technology, Ciudad de Mexico 03940, Mexico.
Entropy (Basel). 2023 May 29;25(6):866. doi: 10.3390/e25060866.
Understanding the dynamics of complex systems defined in the sense of Caputo, such as fractional differences, is crucial for predicting their behavior and improving their functionality. In this paper, the emergence of chaos in complex dynamical networks with indirect coupling and discrete systems, both utilizing fractional order, is presented. The study employs indirect coupling to produce complex dynamics in the network, where the connection between the nodes occurs through intermediate fractional order nodes. The temporal series, phase planes, bifurcation diagrams, and Lyapunov exponent are considered to analyze the inherent dynamics of the network. Analyzing the spectral entropy of the chaotic series generated, the complexity of the network is quantified. As a final step, we demonstrate the feasibility of implementing the complex network. It is implemented on a field-programmable gate array (FPGA), which confirms its hardware realizability.
理解如分数阶差分等在卡普托意义下定义的复杂系统的动力学,对于预测其行为和改善其功能至关重要。本文介绍了在具有间接耦合的复杂动态网络和离散系统中混沌的出现,这两者均采用分数阶。该研究采用间接耦合在网络中产生复杂动力学,其中节点之间的连接通过中间分数阶节点发生。考虑时间序列、相平面、分岔图和李雅普诺夫指数来分析网络的固有动力学。通过分析所生成混沌序列的谱熵,对网络的复杂性进行量化。最后,我们展示了实现该复杂网络的可行性。它在现场可编程门阵列(FPGA)上实现,这证实了其硬件可实现性。