Das Pinaki, Klug Jeffrey A, Sinclair Nicholas, Wang Xiaoming, Toyoda Yoshimasa, Li Yuelin, Williams Brendan, Schuman Adam, Zhang Jun, Turneaure Stefan J
Dynamic Compression Sector, Institute for Shock Physics, Washington State University, Argonne, Illinois 60439, USA.
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Rev Sci Instrum. 2020 Aug 1;91(8):085115. doi: 10.1063/5.0003427.
Determining real-time changes in the local atomistic order is important for a mechanistic understanding of shock wave induced structural and chemical changes. However, the single event and short duration (nanosecond times) nature of shock experiments pose challenges in obtaining Extended X-ray Absorption Fine Structure (EXAFS) measurements-typically used for monitoring local order changes. Here, we report on a new single pulse (∼100 ps duration) transmission geometry EXAFS capability for use in laser shock-compression experiments at the Dynamic Compression Sector (DCS), Advanced Photon Source. We used a flat plate of highly oriented pyrolytic graphite (HOPG) as the spectrometer element to energy disperse x rays transmitted through the sample. It provided high efficiency with ∼15% of the x rays incident on the HOPG reaching an x-ray area detector with high quantum efficiency. This combination resulted in a good signal-to-noise ratio (∼10), an energy resolution of ∼10 eV at 10 keV, EXAFS spectra covering 100 s of eV, and a good pulse to pulse reproducibility of our single pulse measurements. Ambient EXAFS spectra for Cu and Au are compared to the reference spectra, validating our measurement system. Comparison of single pulse EXAFS results for ambient and laser shocked Ge(100) shows large changes in the local structure of the short lived state of shocked Ge. The current DCS EXAFS capability can be used to perform single pulse measurements in laser shocked materials from ∼9 keV to 13 keV. These EXAFS developments will be available to all users of the DCS.
确定局部原子序的实时变化对于从机理上理解冲击波诱导的结构和化学变化至关重要。然而,冲击实验的单事件和短持续时间(纳秒级)特性给获取扩展X射线吸收精细结构(EXAFS)测量带来了挑战,EXAFS通常用于监测局部序的变化。在此,我们报告了一种新的单脉冲(约100皮秒持续时间)透射几何结构的EXAFS能力,用于先进光子源动态压缩部(DCS)的激光冲击压缩实验。我们使用高度取向热解石墨(HOPG)平板作为光谱仪元件,对透过样品的X射线进行能量色散。它具有高效率,入射到HOPG上的X射线约15%能到达具有高量子效率的X射线面探测器。这种组合产生了良好的信噪比(约为10),在10 keV时能量分辨率约为10 eV,EXAFS光谱覆盖100多个电子伏特,并且我们的单脉冲测量具有良好的脉冲间再现性。将铜和金的环境EXAFS光谱与参考光谱进行比较,验证了我们的测量系统。对环境和激光冲击后的Ge(100)的单脉冲EXAFS结果进行比较,表明冲击后Ge的短寿命状态的局部结构发生了很大变化。当前DCS的EXAFS能力可用于对激光冲击材料在约9 keV至13 keV范围内进行单脉冲测量。这些EXAFS技术进展将可供DCS的所有用户使用。