Suppr超能文献

基于分类树预测乳腺癌保乳术后放疗与未放疗患者假体植入乳房重建失败的研究

Development of a Classification Tree to Predict Implant-Based Reconstruction Failure with or without Postmastectomy Radiation Therapy for Breast Cancer.

机构信息

Harvard Medical School, Boston, MA, USA.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Ann Surg Oncol. 2021 Mar;28(3):1669-1679. doi: 10.1245/s10434-020-09068-3. Epub 2020 Sep 1.

Abstract

PURPOSE

The aim of this study was to determine the complications, incidence, and predictors of implant-based reconstruction failure (RF) among patients treated with mastectomy for breast cancer.

METHODS

We retrospectively reviewed 108 patients who underwent mastectomy, tissue expander, and implant-based breast reconstruction with or without radiation therapy (RT) at our institution (2000-2014). Descriptive statistics determined complication incidences, with major complications defined as any complications requiring surgical intervention or inpatient management. Chi square and Fisher's exact tests determined differences in RF incidences, defined as implant loss. Logistic regression analyses identified predictors of RF.

RESULTS

Median follow-up was 42.5 months. Sixty patients (55.6%) experienced major complications. Overall, 27 patients (25%) experienced RF. Incidences of RF were significantly increased in patients who had any major complication (43.3% vs. 2.1%; p < 0.0001), especially infection (61.3% vs. 10.4%; p < 0.0001), delayed wound healing (83.3% vs. 21.7%; p = 0.004), and implant exposure (80.0% vs. 19.4%; p = 0.0002). Receiving RT, but not timing of RT, significantly predicted RF [odds ratio (OR) 4.00, 95% confidence interval (CI) 1.11-14.47; p = 0.03]. On multivariable analysis, infection (OR 7.69, 95% CI 2.12-27.89; p = 0.002) and delayed wound healing (OR 17.86, 95% CI 1.59-200.48; p = 0.02) independently predicted for RF. Our newly developed classification tree, which includes stepwise assessment of major infection, delayed wound healing, implant exposure, age ≥ 50 years, and total number of lymph nodes removed ≥ 10, accurately predicted 74% of RF events and 75% of non-RF events.

CONCLUSIONS

Infection or delayed wound healing requiring surgical intervention or hospitalization and receipt of RT, but not radiation timing, were significant predictors of RF. Our classification tree demonstrated > 70% accuracy for stepwise prediction of RF.

摘要

目的

本研究旨在确定乳腺癌患者接受乳房切除术联合组织扩张器和植入物乳房重建术后的并发症发生率和植入物失败(RF)的预测因素。

方法

我们回顾性分析了 2000 年至 2014 年在我院接受乳房切除术、组织扩张器和植入物乳房重建术(伴或不伴放射治疗(RT))的 108 例患者。描述性统计确定了并发症发生率,主要并发症定义为需要手术干预或住院治疗的任何并发症。卡方检验和 Fisher 精确检验确定了 RF 发生率(定义为植入物丢失)的差异。逻辑回归分析确定了 RF 的预测因素。

结果

中位随访时间为 42.5 个月。60 例(55.6%)患者发生主要并发症。27 例(25%)患者发生 RF。有任何主要并发症的患者 RF 发生率显著增加(43.3%比 2.1%;p<0.0001),尤其是感染(61.3%比 10.4%;p<0.0001)、延迟愈合(83.3%比 21.7%;p=0.004)和植入物外露(80.0%比 19.4%;p=0.0002)。接受 RT,但 RT 时机无显著差异,显著预测 RF [比值比(OR)4.00,95%置信区间(CI)1.11-14.47;p=0.03]。多变量分析显示,感染(OR 7.69,95%CI 2.12-27.89;p=0.002)和延迟愈合(OR 17.86,95%CI 1.59-200.48;p=0.02)独立预测 RF。我们新开发的分类树,包括对主要感染、延迟愈合、植入物外露、年龄≥50 岁和淋巴结切除总数≥10 进行逐步评估,准确预测了 74%的 RF 事件和 75%的非 RF 事件。

结论

感染或延迟愈合导致需要手术干预或住院治疗,以及接受 RT,但不是 RT 时机,是 RF 的显著预测因素。我们的分类树对 RF 的逐步预测准确率超过 70%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验