Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
Department of Chemistry, School of Science, OP Jindal University, Raigarh, Chhattisgarh, India.
J Basic Microbiol. 2020 Oct;60(10):819-827. doi: 10.1002/jobm.202000340. Epub 2020 Sep 2.
Electrochemical communication during biofilm formation has recently been identified. Bacteria within biofilm-adopt different strategies for electrochemical communication such as direct contact via membrane-bound molecules, diffusive electron transfer via soluble redox-active molecules, and ion channel-mediated long-range electrochemical signaling. Long-range electrical signals are important to communicate with distant members within the biofilm, which function through spatially propagating waves of potassium ion (K ) that depolarizes neighboring cells. During propagation, these waves coordinate between the metabolic states of interior and peripheral cells of the biofilm. The understanding of electrochemical communication within the biofilm may provide new strategies to control biofilm-mediated drug resistance. Here, we summarized the different mechanisms of electrochemical communication among bacterial populations and suggested its possible role in the development of high level of antibiotic resistance. Thus, electrochemical signaling opens a new avenue concerning the electrophysiology of bacterial biofilm and may help to control the biofilm-mediated infection by developing future antimicrobials.
电化学通讯在生物膜形成过程中最近被识别出来。生物膜内的细菌采用不同的电化学通讯策略,例如通过膜结合分子进行直接接触、通过可溶性氧化还原活性分子进行扩散电子转移,以及通过离子通道介导的远程电化学信号传递。远程电信号对于与生物膜内的远距离成员进行通信非常重要,它们通过传播钾离子 (K+) 的空间波来实现,这种波使邻近细胞去极化。在传播过程中,这些波协调生物膜内部和外围细胞的代谢状态。对生物膜内电化学通讯的理解可能为控制生物膜介导的耐药性提供新的策略。在这里,我们总结了细菌群体之间电化学通讯的不同机制,并提出了其在高水平抗生素耐药性发展中的可能作用。因此,电化学信号传递为细菌生物膜的电生理学开辟了新途径,并可能通过开发未来的抗菌药物来帮助控制生物膜介导的感染。