Université de Montpellier, INRAE, DMEM, Montpellier, France.
Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France.
Am J Physiol Cell Physiol. 2020 Nov 1;319(5):C807-C824. doi: 10.1152/ajpcell.00340.2020. Epub 2020 Sep 2.
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Akt/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路负责响应营养物质和生长因子来调节生物大分子合成、细胞生长和代谢。调节发育和 DNA 损伤反应(REDD)1 是一种保守且普遍存在的蛋白质,它会被多种刺激短暂诱导。REDD1 蛋白作为 Akt/mTOR 信号通路的内源性抑制剂,已被证明可以调节细胞生长、线粒体功能、氧化应激和细胞凋亡。最近的研究还表明,REDD1 的适时表达限制了 Akt/mTOR 依赖性合成过程,以在代谢应激期间节省能量,避免能量崩溃和有害后果。与代谢适应的这种有益作用相反,REDD1 的慢性表达似乎与几种疾病的发病机制有关。事实上,REDD1 的表达在许多病理学中都被发现作为早期生物标志物,包括炎症性疾病、癌症、神经退行性疾病、抑郁症、糖尿病和肥胖症。此外,REDD1 的持续表达与细胞凋亡、过量的活性氧(ROS)产生和炎症激活导致组织损伤有关。在这篇综述中,我们解析了 REDD1 作为一种可能的代谢双重作用物的几种机制,具体取决于其在不同生理和病理环境下的表达持续时间。我们还讨论了 REDD1 在 Akt/mTOR 信号通路和能量代谢之间的串扰中所起的作用。