Suppr超能文献

基于最先进的模糊元启发式 ANFIS 的机器学习模型在印度恒河中上游平原洪水易发性预测制图中的优化。

Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India.

机构信息

Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.

Department of Geomorphology, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 9821, Iran.

出版信息

Sci Total Environ. 2021 Jan 1;750:141565. doi: 10.1016/j.scitotenv.2020.141565. Epub 2020 Aug 13.

Abstract

This study is an attempt to quantitatively test and compare novel advanced-machine learning algorithms in terms of their performance in achieving the goal of predicting flood susceptible areas in a low altitudinal range, sub-tropical floodplain environmental setting, like that prevailing in the Middle Ganga Plain (MGP), India. This part of the Ganga floodplain region, which under the influence of undergoing active tectonic regime related subsidence, is the hotbed of annual flood disaster. This makes the region one of the best natural laboratories to test the flood susceptibility models for establishing a universalization of such models in low relief highly flood prone areas. Based on highly sophisticated flood inventory archived for this region, and 12 flood conditioning factors viz. annual rainfall, soil type, stream density, distance from stream, distance from road, Topographic Wetness Index (TWI), altitude, slope aspect, slope, curvature, land use/land cover, and geomorphology, an advanced novel hybrid model Adaptive Neuro Fuzzy Inference System (ANFIS), and three metaheuristic models-based ensembles with ANFIS namely ANFIS-GA (Genetic Algorithm), ANFIS-DE (Differential Evolution), and ANFIS-PSO (Particle Swarm Optimization), have been applied for zonation of the flood susceptible areas. The flood inventory dataset, prepared by collected flood samples, were apportioned into 70:30 classes to prepare training and validation datasets. One independent validation method, the Area-Under Receiver Operating Characteristic (AUROC) Curve, and other 11 cut-off-dependent model evaluation metrices have helped to conclude that the ANIFS-GA has outperformed other three models with highest success rate AUC = 0.922 and prediction rate AUC = 0.924. The accuracy was also found to be highest for ANFIS-GA during training (0.886) & validation (0.883). Better performance of ANIFS-GA than the individual models as well as some ensemble models suggests and warrants further study in this topoclimatic environment using other classes of susceptibility models. This will further help establishing a benchmark model with capability of highest accuracy and sensitivity performance in the similar topographic and climatic setting taking assumption of the quality of input parameters as constant.

摘要

本研究旨在定量测试和比较新型先进机器学习算法在实现预测低海拔范围、亚热带洪泛区环境(如印度恒河中游平原)中洪水易灾区目标方面的性能。该恒河洪泛区的一部分受到活跃构造相关沉降的影响,是每年洪水灾害的温床。这使得该地区成为测试洪水易感性模型的最佳天然实验室之一,以便在低地势高洪水易发地区推广这些模型。基于为该地区存档的高度复杂的洪水清单以及 12 个洪水条件因素,即年降雨量、土壤类型、溪流密度、与溪流的距离、与道路的距离、地形湿度指数 (TWI)、海拔、坡度方向、坡度、曲率、土地利用/土地覆盖和地貌,应用了一种先进的新型混合模型自适应神经模糊推理系统 (ANFIS),以及三个基于元启发式模型的与 ANFIS 集成的模型,即 ANFIS-GA(遗传算法)、ANFIS-DE(差分进化)和 ANFIS-PSO(粒子群优化),对洪水易灾区进行分区。洪水清单数据集是通过收集洪水样本编制的,分为 70:30 类,以准备训练和验证数据集。一种独立的验证方法,即接收者操作特征曲线下的面积 (AUROC) 曲线,以及其他 11 个基于截断的模型评估指标,有助于得出结论,即 ANIFS-GA 的成功率 AUC=0.922 和预测率 AUC=0.924 均高于其他三个模型。在训练(0.886)和验证(0.883)期间,ANFIS-GA 的准确性也被发现是最高的。ANIFS-GA 优于单个模型和一些集成模型的性能表明,在这种地形气候环境中,使用其他类别的易感性模型进一步研究是合理的。这将进一步帮助建立一个具有最高精度和灵敏度性能的基准模型,假设输入参数的质量为常数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验