Suppr超能文献

基于骨骼特征新结构和深度学习模型的人类活动预测。

Prediction of Human Activities Based on a New Structure of Skeleton Features and Deep Learning Model.

机构信息

Sciences and Technologies of Image and Telecommunications (SETIT) Laboratory, Sfax 3029, Tunisia.

Mathematics and Computer Science Department, Universitat de les Illes Balears (UIB), E-07122 Palma, Spain.

出版信息

Sensors (Basel). 2020 Sep 1;20(17):4944. doi: 10.3390/s20174944.

Abstract

The recognition of human activities is usually considered to be a simple procedure. Problems occur in complex scenes involving high speeds. Activity prediction using Artificial Intelligence (AI) by numerical analysis has attracted the attention of several researchers. Human activities are an important challenge in various fields. There are many great applications in this area, including smart homes, assistive robotics, human-computer interactions, and improvements in protection in several areas such as security, transport, education, and medicine through the control of falling or aiding in medication consumption for elderly people. The advanced enhancement and success of deep learning techniques in various computer vision applications encourage the use of these methods in video processing. The human presentation is an important challenge in the analysis of human behavior through activity. A person in a video sequence can be described by their motion, skeleton, and/or spatial characteristics. In this paper, we present a novel approach to human activity recognition from videos using the Recurrent Neural Network (RNN) for activity classification and the Convolutional Neural Network (CNN) with a new structure of the human skeleton to carry out feature presentation. The aims of this work are to improve the human presentation through the collection of different features and the exploitation of the new RNN structure for activities. The performance of the proposed approach is evaluated by the RGB-D sensor dataset CAD-60. The experimental results show the performance of the proposed approach through the average error rate obtained (4.5%).

摘要

人类活动识别通常被认为是一个简单的过程。在涉及高速的复杂场景中会出现问题。通过数值分析使用人工智能 (AI) 进行活动预测已经引起了几位研究人员的关注。人类活动是各个领域的重要挑战。在这个领域有许多很好的应用,包括智能家居、辅助机器人、人机交互以及通过控制跌倒或帮助老年人用药来提高安全、交通、教育和医疗等几个领域的保护水平。深度学习技术在各种计算机视觉应用中的先进增强和成功鼓励在视频处理中使用这些方法。人体表示是通过活动分析人体行为的一个重要挑战。视频序列中的人可以通过其运动、骨架和/或空间特征来描述。在本文中,我们提出了一种使用递归神经网络 (RNN) 进行活动分类和具有人体骨架新结构的卷积神经网络 (CNN) 从视频中识别人类活动的新方法,以进行特征表示。这项工作的目的是通过收集不同的特征和利用新的 RNN 结构来改进人体表示。通过使用 RGB-D 传感器数据集 CAD-60 来评估所提出方法的性能。实验结果通过所获得的平均错误率 (4.5%) 显示了所提出方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd26/7506930/36e792411a22/sensors-20-04944-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验