Suppr超能文献

基于YOLOX计算机模型评估重度膝关节骨关节炎患者膝关节功能与手动评估相比的可行性。

Feasibility of YOLOX computer model-based assessment of knee function compared with manual assessment for people with severe knee osteoarthritis.

作者信息

Yang Tao, Zhao Jie, Wang Ben, Wang Li, Bao Hengzhe, Li Bing, Luo Wen, Zhao Huiwen, Liu Jun

机构信息

Joint Surgery Department, Tianjin Hospital, No. 406, Jiefangnan Road, Tianjin, 300211, People's Republic of China.

College of Orthopedics, Tianjin Medical University, Tianjin, People's Republic of China.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 24;25(1):40. doi: 10.1186/s12911-025-02877-0.

Abstract

OBJECTIVE

This study aimed to assess the feasibility of computer model-based evaluation of knee joint functional capacity in comparison with manual assessment.

METHODS

This study consisted of two phases: (1) developing an automatic knee joint action recognition and classification system on the basis of improved YOLOX and (2) analyzing the feasibility of assessment by the software system and doctors, identifying the knee joint function of patients, and determining the accuracy of the software system. We collected 40-50 samples for use in clinical experiments. The datasets used in this study were collected from patients admitted to the Joint Surgery Center. In this study, the knee joint assessment items included stair climbing, walking on uneven surfaces, and knee joint function. To assess the computer model's automatic evaluation of knee joint function, MedCalc 20 statistical software was used to analyze the consistency of the Lequesne functional index between the computer model's automated determinations and manual independent assessments.

RESULTS

The weighted kappa coefficients between the doctors' assessments and the software system's assessments were 0.76 (95% confidence intervals:0.59 ~ 0.92) for climbing up and down stairs, 0.64 (95% confidence intervals:0.45 ~ 0.82) for walking on uneven floors, and 0.68 (95% confidence intervals:0.53 ~ 0.84) for the Lequesne functional index, indicating good consistency between the assessments of the software system and doctors.

CONCLUSION

This paper introduces an automatic knee joint action recognition and classification method based on improved YOLOX. By comparing the results obtained by orthopedic doctors and the software system, the feasibility of this software system was validated in the clinic.

摘要

目的

本研究旨在评估基于计算机模型的膝关节功能能力评估与人工评估相比的可行性。

方法

本研究包括两个阶段:(1)基于改进的YOLOX开发自动膝关节动作识别与分类系统;(2)分析软件系统与医生评估的可行性,识别患者的膝关节功能,并确定软件系统的准确性。我们收集了40 - 50个样本用于临床实验。本研究中使用的数据集来自关节外科中心收治的患者。在本研究中,膝关节评估项目包括上下楼梯、在不平整地面行走以及膝关节功能。为评估计算机模型对膝关节功能的自动评估,使用MedCalc 20统计软件分析计算机模型自动测定结果与人工独立评估之间Lequesne功能指数的一致性。

结果

医生评估与软件系统评估之间的加权kappa系数,上下楼梯为0.76(95%置信区间:0.59 ~ 0.92),在不平整地面行走为0.64(95%置信区间:0.45 ~ 0.82),Lequesne功能指数为0.68(95%置信区间:0.53 ~ 0.84),表明软件系统与医生的评估之间具有良好的一致性。

结论

本文介绍了一种基于改进YOLOX的自动膝关节动作识别与分类方法。通过比较骨科医生和软件系统获得的结果,验证了该软件系统在临床中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac7/11763141/72662d42f377/12911_2025_2877_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验