Smith James S, Lappin Katrina M, Craig Stephanie G, Liberante Fabio G, Crean Clare M, McDade Simon S, Thompson Alexander, Mills Ken I, Savage Kienan I
Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.
Wellcome Sanger Institute, Cambridge, UK.
J Transl Med. 2020 Sep 3;18(1):339. doi: 10.1186/s12967-020-02500-y.
The cohesin complex plays a major role in folding the human genome into 3D structural domains. Mutations in members of the cohesin complex are known early drivers of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), with STAG2 the most frequently mutated complex member.
Here we use functional genomics (RNA-seq, ChIP-seq and HiChIP) to investigate the impact of chronic STAG2 loss on three-dimensional genome structure and transcriptional programming in a clinically relevant model of chronic STAG2 loss.
The chronic loss of STAG2 led to loss of smaller loop domains and the maintenance/formation of large domains that, in turn, led to altered genome compartmentalisation. These changes in genome structure resulted in altered gene expression, including deregulation of the HOXA locus and the MAPK signalling pathway, resulting in increased sensitivity to MEK inhibition.
The altered genomic architecture driven by the chronic loss of STAG2 results in altered gene expression that may contribute to leukaemogenesis and may be therapeutically targeted.
黏连蛋白复合体在将人类基因组折叠成三维结构域中起主要作用。黏连蛋白复合体成员的突变是骨髓增生异常综合征(MDS)和急性髓系白血病(AML)的已知早期驱动因素,其中STAG2是最常发生突变的复合体成员。
在此,我们使用功能基因组学(RNA测序、染色质免疫沉淀测序和高通量染色体构象捕获测序)来研究慢性STAG2缺失对慢性STAG2缺失的临床相关模型中三维基因组结构和转录编程的影响。
STAG2的慢性缺失导致较小环结构域的丢失以及大结构域的维持/形成,进而导致基因组区室化改变。这些基因组结构的变化导致基因表达改变,包括HOXA基因座和丝裂原活化蛋白激酶信号通路的失调,从而导致对MEK抑制的敏感性增加。
由STAG2慢性缺失驱动的基因组结构改变导致基因表达改变,这可能有助于白血病发生,并且可能成为治疗靶点。