Kim Steven, Wand Jeffrey, Magana-Ramirez Christina, Fraij Jenel
Department of Mathematics and Statistics, California State University, Monterey Bay, Seaside, CA, USA.
Department of Mathematics, Hartnell College, Salinas, CA, USA.
Risk Anal. 2021 Jan;41(1):92-109. doi: 10.1111/risa.13588. Epub 2020 Sep 4.
Hormesis refers to a nonmonotonic (biphasic) dose-response relationship in toxicology, environmental science, and related fields. In the presence of hormesis, a low dose of a toxic agent may have a lower risk than the risk at the control dose, and the risk may increase at high doses. When the sample size is small due to practical, logistic, and ethical considerations, a parametric model may provide an efficient approach to hypothesis testing at the cost of adopting a strong assumption, which is not guaranteed to be true. In this article, we first consider alternative parameterizations based on the traditional three-parameter logistic regression. The new parameterizations attempt to provide robustness to model misspecification by allowing an unspecified dose-response relationship between the control dose and the first nonzero experimental dose. We then consider experimental designs including the uniform design (the same sample size per dose group) and the -optimal design (minimizing the standard error of an estimator for a parameter of interest). Our simulation studies showed that (1) the -optimal design under the traditional three-parameter logistic regression does not help reducing an inflated Type I error rate due to model misspecification, (2) it is helpful under the new parameterization with three parameters (Type I error rate is close to a fixed significance level), and (3) the new parameterization with four parameters and the -optimal design does not reduce statistical power much while preserving the Type I error rate at a fixed significance level.
兴奋效应是指毒理学、环境科学及相关领域中一种非单调(双相)的剂量反应关系。在存在兴奋效应的情况下,低剂量的有毒物质可能比对照剂量的风险更低,而高剂量时风险可能会增加。当由于实际、逻辑和伦理考量导致样本量较小时,参数模型可能会以采用一个不一定为真的强假设为代价,提供一种有效的假设检验方法。在本文中,我们首先考虑基于传统三参数逻辑回归的替代参数化方法。新的参数化方法试图通过允许对照剂量与第一个非零实验剂量之间存在未指定的剂量反应关系,来增强模型对错误设定的稳健性。然后我们考虑实验设计,包括均匀设计(每个剂量组样本量相同)和 -最优设计(最小化感兴趣参数估计量的标准误差)。我们的模拟研究表明:(1)传统三参数逻辑回归下的 -最优设计无助于降低因模型错误设定导致的膨胀的第一类错误率;(2)在具有三个参数的新参数化方法下它是有帮助的(第一类错误率接近固定的显著性水平);(3)具有四个参数的新参数化方法和 -最优设计在保持第一类错误率处于固定显著性水平的同时,不会大幅降低统计功效。