Suppr超能文献

利用衰减全反射/傅里叶变换红外光谱联用技术与 DD-SIMCA 单类建模对初榨椰子油中的掺杂物进行鉴定和识别。

Authentication and identification of adulterants in virgin coconut oil using ATR/FTIR in tandem with DD-SIMCA one class modeling.

机构信息

Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.

Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.

出版信息

Talanta. 2020 Nov 1;219:121338. doi: 10.1016/j.talanta.2020.121338. Epub 2020 Jul 7.

Abstract

This study evaluates the use of Fourier transform infrared spectroscopy with attenuated total reflectance (ATR/FTIR) in tandem with data driven soft independent modeling of class analogy (DD-SIMCA) to check authenticity and monitor virgin coconut oil adulteration. By using infrared spectra of pure samples and samples adulterated with canola, corn, sunflower and soybean, one class models were developed to evaluate the authenticity and adulteration of virgin coconut oil. The proposed methodology was able to confirm the authenticity and to detect the adulteration with all tested oils in a concentration range of 10-40%. Also, it was possible to identify the four adulterants oils studied with 88-100% of sensitivity and 96-100% of specificity. The results indicated that ATR/FTIR spectroscopy in conjunction with a one-class strategy based on DD-SIMCA is a clean and fast methodology that can be easily implemented for virgin coconut oil purity control.

摘要

本研究评估了傅里叶变换衰减全反射红外光谱(ATR/FTIR)与数据驱动的软独立建模分类类比(DD-SIMCA)的结合使用,以检查真实性并监测初榨椰子油的掺假情况。通过使用纯样品和用菜籽油、玉米油、葵花籽油和大豆油掺假的样品的红外光谱,建立了一类模型来评估初榨椰子油的真实性和掺假情况。该方法能够在 10-40%的浓度范围内确认真实性,并检测所有测试油的掺假情况。此外,还可以用 88-100%的灵敏度和 96-100%的特异性识别出所研究的四种掺假油。结果表明,ATR/FTIR 光谱结合基于 DD-SIMCA 的一类策略是一种清洁、快速的方法,可轻松用于初榨椰子油纯度控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验