Suppr超能文献

多元曲线分辨方法在 ATR-FTIR 数据中的应用,用于评估初榨椰子油的掺假情况。

Multivariate Curve Resolution Methodology Applied to the ATR-FTIR Data for Adulteration Assessment of Virgin Coconut Oil.

机构信息

Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy.

出版信息

Molecules. 2023 Jun 9;28(12):4661. doi: 10.3390/molecules28124661.

Abstract

Virgin coconut oil (VCO) is a functional food with important health benefits. Its economic interest encourages fraudsters to deliberately adulterate VCO with cheap and low-quality vegetable oils for financial gain, causing health and safety problems for consumers. In this context, there is an urgent need for rapid, accurate, and precise analytical techniques to detect VCO adulteration. In this study, the use of Fourier transform infrared (FTIR) spectroscopy combined with multivariate curve resolution-alternating least squares (MCR-ALS) methodology was evaluated to verify the purity or adulteration of VCO with reference to low-cost commercial oils such as sunflower (SO), maize (MO) and peanut (PO) oils. A two-step analytical procedure was developed, where an initial control chart approach was designed to assess the purity of oil samples using the MCR-ALS score values calculated on a data set of pure and adulterated oils. The pre-treatment of the spectral data by derivatization with the Savitzky-Golay algorithm allowed to obtain the classification limits able to distinguish the pure samples with 100% of correct classifications in the external validation. In the next step, three calibration models were developed using MCR-ALS with correlation constraints for analysis of adulterated coconut oil samples in order to assess the blend composition. Different data pre-treatment strategies were tested to best extract the information contained in the sample fingerprints. The best results were achieved by derivative and standard normal variate procedures obtaining RMSEP and RE% values in the ranges of 1.79-2.66 and 6.48-8.35%, respectively. The models were optimized using a genetic algorithm (GA) to select the most important variables and the final models in the external validations gave satisfactory results in quantifying adulterants, with absolute errors and RMSEP of less than 4.6% and 1.470, respectively.

摘要

初榨椰子油(VCO)是一种具有重要健康益处的功能性食品。其经济利益促使不法分子为了谋取经济利益,故意将 VCO 与廉价低质的植物油掺假,从而给消费者的健康和安全带来问题。在这种情况下,迫切需要快速、准确和精确的分析技术来检测 VCO 的掺假。在本研究中,评估了傅里叶变换红外(FTIR)光谱结合多变量曲线分辨交替最小二乘法(MCR-ALS)方法,以验证 VCO 与葵花籽油(SO)、玉米油(MO)和花生油(PO)等低成本商业油的纯度或掺假情况。开发了两步分析程序,其中设计了初始控制图方法,使用基于纯油和掺油数据集计算的 MCR-ALS 得分值来评估油样的纯度。通过与 Savitzky-Golay 算法衍生相结合对光谱数据进行预处理,获得了能够区分纯样的分类限,在外部验证中,100%的纯样得到了正确分类。在下一步中,使用 MCR-ALS 开发了三个校准模型,并使用相关约束进行分析,以评估掺假椰子油样品的混合组成。测试了不同的数据预处理策略,以最佳方式提取样品指纹中的信息。通过导数和标准正态变量处理程序,获得了 RMSEP 和 RE%值分别在 1.79-2.66 和 6.48-8.35%的范围内,得到了最佳结果。使用遗传算法(GA)对模型进行了优化,以选择最重要的变量,最终模型在外部验证中的定量掺假结果令人满意,绝对误差和 RMSEP 分别小于 4.6%和 1.470。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a78f/10302750/8157a9bb28ac/molecules-28-04661-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验