Suppr超能文献

用于微波电磁应用的柔性3D打印导电超材料单元

Flexible 3D Printed Conductive Metamaterial Units for Electromagnetic Applications in Microwaves.

作者信息

Tasolamprou Anna C, Mentzaki Despoina, Viskadourakis Zacharias, Economou Eleftherios N, Kafesaki Maria, Kenanakis George

机构信息

Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece.

Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece.

出版信息

Materials (Basel). 2020 Sep 2;13(17):3879. doi: 10.3390/ma13173879.

Abstract

In this work we present a method for fabricating three dimensional, ultralight and flexible millimeter metamaterial units using a commercial household 3D printer. The method is low-cost, fast, eco-friendly and accessible. In particular, we use the Fused Deposition Modeling 3D printing technique and we fabricate flexible conductive Spilt Ring Resonators (SRRs) in a free-standing form. We characterized the samples experimentally through measurements of their spectral transmission, using standard rectangular microwave waveguides. Our findings show that the resonators produce well defined resonant electromagnetic features that depend on the structural details and the infiltrating dielectric materials, indicating that the thin, flexible and light 3D printed structures may be used as electromagnetic microwave components and electromagnetic fabrics for coating a variety of devices and infrastructure units, while adapting to different shapes and sizes.

摘要

在这项工作中,我们展示了一种使用商用家用3D打印机制造三维、超轻且灵活的毫米级超材料单元的方法。该方法成本低、速度快、环保且易于实现。具体而言,我们采用熔融沉积建模3D打印技术,以独立形式制造柔性导电裂环谐振器(SRR)。我们使用标准矩形微波波导,通过测量样品的光谱透射率对其进行了实验表征。我们的研究结果表明,谐振器产生了明确的共振电磁特性,这些特性取决于结构细节和渗透的介电材料,这表明薄的、柔性的和轻质的3D打印结构可作为电磁微波组件和电磁织物,用于涂覆各种设备和基础设施单元,同时适应不同的形状和尺寸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/599f/7504361/8e3147fdb101/materials-13-03879-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验