Suppr超能文献

用于高效非富勒烯有机太阳能电池的基于苯并二噻吩核心的小分子受体的设计

Designing of benzodithiophene core-based small molecular acceptors for efficient non-fullerene organic solar cells.

作者信息

Mehboob Muhammad Yasir, Khan Muhammad Usman, Hussain Riaz, Hussain Riaz, Ayub Khurshid, Sattar Abdul, Ahmad Muhammad Kaleem, Irshad Zobia, Adnan Muhammad

机构信息

Department of Chemistry, University of Okara, Okara 56300, Pakistan.

Department of Chemistry, University of Okara, Okara 56300, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jan 5;244:118873. doi: 10.1016/j.saa.2020.118873. Epub 2020 Aug 22.

Abstract

Nowadays, organic solar cells (OSCs) with non-fullerene electron acceptors provide the highest efficiencies among all studied OSCs. To further improve the efficiencies of fullerene-free organic solar cells, end-capped acceptor modification is made with strong electron withdrawing groups. In this report, we have theoretically designed five new novel Benzodithiophene core-based acceptor molecules (H1-H5) with the aim to study the possible enhancement in photophysical, optoelectronic, and photovoltaic properties of newly designed molecules. The end-capped acceptor modification of famous and recently synthesized FBDIC molecule has been made with strong electron withdrawing groups. Density functional theory and time-dependent-density functional theory are extensively used to study the structural-property relationship, optical properties and various geometrical parameters like frontier molecular orbitals alignment, excitation and binding energy, transition density matrix along with open circuit voltage, density of states and dipole moment. Commonly, low reorganization energies (hole and electron) afford high charge mobility and our all designed systems are enriched in aspect (λ = 0.0044-0.0104 eV and λ = 0.0060-0.0090 eV). Moreover, H1-H5 molecules demonstrate red-shifting in absorption spectrum (λ = 741-812 nm) as compare to R (λ = 728 nm). Low excitation and binding energies with low HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap of H1-H5 suggested that designed molecules are better and suitable candidates for high performance organic solar cell. Results of all analysis indicate that this theoretical framework demonstrates that end-capped acceptors modification is a simple and effective alternative strategy to achieve the desirable optoelectronic properties. Therefore, H1-H5 are recommended to experimentalist for out-looking future developments of highly efficient solar cells.

摘要

如今,具有非富勒烯电子受体的有机太阳能电池(OSC)在所有研究的OSC中效率最高。为了进一步提高无富勒烯有机太阳能电池的效率,采用强吸电子基团对封端受体进行修饰。在本报告中,我们从理论上设计了五种新型的基于苯并二噻吩核的受体分子(H1-H5),旨在研究新设计分子在光物理、光电和光伏性能方面可能的增强效果。已采用强吸电子基团对著名的近期合成的FBDIC分子进行封端受体修饰。密度泛函理论和含时密度泛函理论被广泛用于研究结构-性能关系、光学性质以及各种几何参数,如前线分子轨道排列、激发能和结合能、跃迁密度矩阵以及开路电压、态密度和偶极矩。通常,低重组能(空穴和电子)可提供高电荷迁移率,而我们所有设计的体系在这方面都很突出(λ = 0.0044 - 0.0104 eV和λ = 0.0060 - 0.0090 eV)。此外,与R(λ = 728 nm)相比,H1-H5分子的吸收光谱出现红移(λ = 741 - 812 nm)。H1-H5的低激发能和结合能以及低的最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能隙表明,设计的分子是高性能有机太阳能电池的更好且合适的候选者。所有分析结果表明,该理论框架表明封端受体修饰是实现理想光电性能的一种简单有效的替代策略。因此,建议实验人员使用H1-H5进行高效太阳能电池的未来展望发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验